Crystal Systems and Space Groups

Paul D. Boyle Department of Chemistry University of Western Ontario

Lattices

- Lattices are a regular array of points
- We use **basis vectors** to describe the lattice
- The choice of basis vectors is not unique
- We choose the set of basis vectors which reflects the symmetry present in the lattice
- Transforming from one set of basis vectors does not change the lattice only our description of it

The Unit Cell

- Any 3 non-coplanar lattice translations may be used to define a unit cell (basis vectors)
- The basis vectors are referred to as **a**, **b**, **c**
- The angles between the vectors are referred to as $\alpha,\,\beta,\,\gamma$

Primitive and Non-Primitive Unit Cells

- If the basis vectors are the 3 shortest lattice translations or if they describe a cell of equal volume, the lattice is referred to as a "primitive" lattice
- Lattice symbol is P
- A primitive lattice has one lattice point per unit cell
- "Non-primitive" lattices have more than one lattice point per unit cell

Non-primitive Lattice Translation Vectors

Designation	Extra lattice point(s)	Mnemonic Device	Centring Vector
А	bc face	Abc	(0, 1/2, 1/2)
В	ac face	aBc	(1/2, 0, 1/2)
С	ab face	abC	(1/2, 1/2, 0)
F	each face centre		$(0, \frac{1}{2}, \frac{1}{2}); (\frac{1}{2}, 0, \frac{1}{2}); (\frac{1}{2}, \frac{1}{2}, 0)$
I	body centre		(1/2, 1/2, 1/2)
R		(hexagonal setting)	$(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}); (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$

- Choosing a non-primitive vs. primitive lattice is a matter of convention and observable symmetry
- It is always possible to choose a primitive triclinic lattice
- Choose the lattice and crystal system which conforms to the observable symmetry

Different Unit Cells

- Buerger Cell: a unit cell comprised of the 3 shortest non-coplanar lattice vectors
- Niggli (or reduced) cell: a uniquely defined Buerger cell
- All primitive and non-primitive lattices can be reduced to their unique Niggli reduced cell
- Algorithm: Delaunay reduction gives the Niggli cell

Conventional Unit Cell

- Basis vectors define a right-handed system
- Unit cell edges lie along symmetry directions in the crystal
- Cell is the smallest cell compatible with conditions 1 and 2
- Niggli cells can always be transformed to a conventional setting (and vice versa)

Crystal Systems

There are 7 crystals systems and they are named: Triclinic, Monoclinic, Orthorhombic, Tetragonal, Trigonal, Hexagonal, and Cubic.

What differentiates one crystal system from another?

The order of its principal or characteristic symmetry

Crystal Systems & Their Symmetries

Crystal System	Lattice & point symmetries	Metric Constraints NOTE: "≠" means "not constrained to be equal to" rather than "not equal to"
Triclinic	1 , 1	$a \neq b \neq c; \alpha \neq \beta \neq \gamma$
Monoclinic	2/m , 2, m	$a \neq b \neq c; \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
Orthorhombic	mmm , mm2, 222	$a \neq b \neq c; \alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	4/mmm , 42m, 4mm, 422, 4/m, 4, 4	$a = b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Trigonal rhombohedral setting hexagonal setting	3 m, 3m, 32, 3 , 3	a = b = c; $\alpha = \beta = \gamma \neq 90^{\circ}$ a = b \neq c; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
Hexagonal	6/mmm , 600, 600, 600, 600, 600, 600, 600, 60	a = b \neq c ; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
Cubic	m3 m, 432, m3, 23	a = b = c; α = β = γ = 90°

Crystallographic Point Symmetries

- Point symmetries are symmetries which all pass through a given point and this point does not change with the application of a symmetry operation
- The symmetry elements which constitute the crystallographic point groups are:
 - Proper rotation axes (n)
 - Mirror planes (m)
 - Inversion centre $(\overline{1}, \text{ or no explicit symbol})$
 - Rotary inversion axes (\overline{n})
- Only n-fold axes where n = 1, 2, 3, 4, 6 are allowed for space filling 3 dimensional objects
- 32 unique crystallographic point groups are obtained from combining the various allowed rotation axes, mirror planes, and inversions
- 11 of the 32 crystallographic point groups are *centrosymmetric*

Laue Groups and Holohedries

• Laue groups: the 11 centrosymmetric groups

- Symmetry of the diffraction pattern as determined from the observed intensities
- Matches the space group without any translations and adding a centre of symmetry
- A crystal system can have more than one Laue group
- Holohedry: When the point group of a crystal is identical to the point group of its lattice
 - There are 7 holohedral point groups which correspond to the 7 crystal systems
 - Holohedries are always centrosymmetric
- All holohedries are Laue groups, but not all Laue groups are holohedries

Proper Rotation Axes

- Rotation about an axis by 360°/n.
- Symmetry operation of the first kind
- Doesn't change handedness of object

Mirror plane

- Creates a reflected object
- Symmetry element of the second kind
- Changes handedness of object

Inversion Centre

- Transforms x, y, z
 into x, y, z
- Symmetry element of the second kind
- Changes handedness of object

Rotary Inversion Axis

- Rotation of 360°/n followed by inversion
- Symmetry element of the second kind
- Changes handedness of object
- 1 is equivalent to an inversion centre
- 2 is equivalent to a mirror plane

Symmetry Notation

- Spectroscopists use Schoenflies notation to describe symmetry (e.g. C_{2v}, D_{4h})
- Crystallographers use Hermann-Mauguin notation (International notation)
- Was introduced by Carl Hermann in 1928, modified by Charles-Victor Mauguin in 1931
- Adopted for the 1935 edition of the *International Tables for Crystallography*

Features of Hermann-Mauguin Notation

- Hermann-Mauguin notation is preferred for crystallography
 - Easier to add translational symmetry elements
 - Directions of symmetry axes are specified
- Quick things to note:
 - Interpretation of Hermann-Mauguin symbols depends on the crystal system
 - "n/m" notation means mirror plane perpendicular to nfold axis
 - Hermann-Mauguin symbols have both "long" and "short" forms
 - Not all symmetry elements present are symbolized, some are left implicit

Brief Detour: Specifying Directions in a Crystal

- Miller Indices, h, k, l
- Specify a plane in a crystal by indexing the reciprocals of where the plane intersects the axes
- Example: a plane has axial intercepts at (-1/4, 1/2, 1/3) the Miller index is (423)
- Planes, vectors, reciprocal lattice points, and forms may be specified using Miller indices
 - Plane: (hkl)
 - Vector: [hkl]
 - Reciprocal lattice point: hkl
 - Forms {hkl}
- In this lecture we will be using (hkl) and [hkl] often

Understanding Hermann-Mauguin Notation for Point Groups

Crystal System	1 st Position	2 nd Position	3 rd Position	Point Groups
Triclinic	Only one position	n, denoting all dire	ctions in crystal	1 , 1
Monoclinic	Only 1 symbol: 2	or $\overline{2} \parallel$ to Y (<i>b</i> is pr	incipal axis)	2/m , 2, m
Orthorhombic	2 and/or 2 ∥ to X	2 and/or 2 ∥ to Y	2 and/or 2 ∥ to Z	mmm , mm2, 222
Tetragonal	4 and/or 4 ∥ to Z	2 and/or $\overline{2} \parallel$ to X and Y	2 and/or 2 ∥ to [110]	4/mmm ,
Trigonal	3 and/or 3 ∥ to Z	2 and/or 2 ∥ to X, Y, U		3m , 3m, 32, 3 , 3
Hexagonal	6 and/or 6 ∥ to Z	2 and/or 2 ∥ to X, Y, U	2 and/or $\overline{2}$ along [1 $\overline{1}$ 0]	6/mmm , 6m2, 6mm, 622, 6/m, 6, 6
Cubic	2 and/or $\overline{2} \parallel$ to X, Y, Z	$2 \text{ and/ar} \overline{2} \parallel \text{ to}$		m 3 , 23
	4 and/or 4 ∥ to X, Y, Z	[111]	2 and/or $\overline{2}$ along face diagonals	m3̄m , 433m, 432

Choosing the Correct Crystal System

- Do not assume the metric relations indicate the correct point group and crystal system!!!
- Correctly identify the Laue group symmetry of the diffraction pattern (equivalent intensities, R_{sym})
- The Laue symmetry indicates the crystal system of your sample
- Correct Laue group assignment narrows space group choices

Space Groups

- Space groups vs Point groups
 - Point groups describe symmetry of isolated objects
 - Space groups describe symmetry of infinitely repeating space filling objects
- Space groups include point symmetry elements
- Space groups include additional translational symmetry elements
- The presence of translational symmetry elements causes systematic absences in the diffraction pattern

Translational Symmetry Elements

- Lattice Translations
 - Trivial unit cell translations
 - Translations due to centring vectors from nonprimitive Bravais lattices
- Screw Axes combine a rotation with translation
- Glide Planes combine a reflection with translation

Screw Axes

- Combines rotation and translation
- Designated as n_m (*e.g.* 2₁, 4₁, 3₂, 4₃)
- Rotation as 360°/n
- Symmetry element of the first kind
- Translation as m/n of a unit cell (n > m)
- Orientation of the screw axis given by its place in the H-M symbol
- Causes systematic absences in axial (h00,0k0,00l) reflections
- Certain pairs of screw axes correspond to right and left handed screws (e.g. 3₁ and 3₂) and are enantiomorphs

Glide Planes

- Combine reflection with translation
- Symmetry element of the second kind
- Designated as a, b, c, d, n and letter gives direction of translational component
- Orientation of reflection plane given by place in the H-M symbol
- Cause systematic absences in zero layers (0kl, h0l, and hk0) of the diffraction pattern

n and d Glide Planes

- n glides translate along face diagonals, (a+b)/2, (a+c)/2, or (b+c)/2
- d glides only occur F and I centred lattices
- d glides translate along face diagonals at ¼ along each direction, *i.e.* (a+b)/4, (a+c)/4, or (b+c)/4
- After 2 (or 4 for d glides) consecutive glide operations the point is identical to the original point plus a unit translations along 2 axes

Interpretation of Space Group Symbols

- Space group symbols consist of several parts
 - Bravais lattice type
 - List of symbols denoting type and orientation of symmetry elements
- Must know the Crystal System in order to correctly interpret the space group symbol

Interpretation of Space Group Symbols

• Perform the following steps:

- Identify the point group of the crystal
 - Remove Bravais lattice type symbol
 - Iba2 → "ba2"
 - Convert all translational symmetry elements to their point counterparts (glides → mirror; screw axes → rotation axes)
 - "ba2" → mm2
- Look up crystal system which corresponds to that point group (mm2 \rightarrow orthorhombic)
- Use Hermann-Mauguin rules for that crystal system

Interpretation of Iba2 Space Group Symbol

- Continue with Iba2 example
- Body centred
- *b* glide reflecting across (100)
- a glide reflecting across (010)
- 2-fold proper rotation parallel to [001]
- mm2 is an acentric point group. Therefore, Iba2 is an acentric space group

Notable Features of Space Groups

- Combining point symmetry and translational symmetry elements with the 14 Bravais lattices yields 230 unique space groups
- 73 of these are symmorphic space groups. These have no translational symmetry elements (*e.g.* P222, F23, Immm)
- 11 enantiomorphous pairs. If a (+) chiral molecule crystallizes in one of these space groups, the (-) enantiomer will crystallize in the other of the pair. *E.g.* P6₁22 and P6₅22
- Enantiopure compounds will crystallize in space groups which only contain symmetry elements of the first kind. There are 65 of these space groups

Representations of Symmetry

- Graphical Representation
 - Qualitative and Symbolic
 - Non-mathematical
 - Visually intuitive (for the most part)
- Equivalent positions (x,y,z)
 - Simple algebraic expressions
 - Good for humans
- Matrix Representation
 - Easy to transform
 - Numerically oriented
 - Good for computers
- ORTEP Representation
 - Compact notation of symmetry operation and unit cell translations
 - Related representations found in PLATON, XP, and CIF

Graphical Representation of Symmetry Elements

- Proper rotations depicted as symbols with the number of vertices which corresponds to n
- Screw axes have same symbol, but have "tails"
- Enantiomeric pairs of screw axes (e.g. 6, and 6) are mirror images of each other

Equivalent Position Representation

- Simple algebraic expressions
- Good for humans

• $P2_{1}/c$ example (1) x, y, z (2) \overline{x} , y + $\frac{1}{2}$, \overline{z} + $\frac{1}{2}$ (3) \overline{x} , \overline{y} , \overline{z} (4) x, \overline{y} + $\frac{1}{2}$, z + $\frac{1}{2}$

Matrix Representation of Symmetry

- Symmetry operator can be partitioned into a rotational part and a translational part
- Rotations can be described as simple 3x3 matrices. Matrix elements are either 1, 0, or -1
- Translations described as 3x1 matrix
- v' = Rv + t where v = [x,y,z]
- For example, in P2₁/c the equivalent position: \overline{x} , y+ $\frac{1}{2}$, \overline{z} + $\frac{1}{2}$ looks like this in matrix representation:

$$\begin{bmatrix} x & ' \\ y & ' \\ z & ' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

ORTEP Symmetry Representation

- Early days of computing memory was expensive
- Needed compact way to depict symmetry equivalent atomic positions including translations
- Avoid negative numbers in unit cell translations
- "5" is the new "0"
- Example: 347502
- Depends on lists of atoms and symmetry operators elsewhere in the file or the program

PLATON, XP, and CIF Symmetry Codes

- Derived and modified from original ORTEP scheme, maintains compactness
- PLATON: [sym_op][T_xT_yT_z].[residue]

- e.g. 2565.01

• XP: $[sym_op][T_xT_yT_z]$

- e.g. 2565

• CIF: [sym_op]_[T_xT_yT_z]

- e.g. 2_565

• All depend on a list of symmetry operators being defined somewhere else in the file or the software

International Tables for Crystallography

- Information on crystallographic symmetry and related topics has been codified and published in the International Tables for Crystallography
- Originally published in 1935, the work has been revised and expanded to include all sorts of topics relevant to X-ray Crystallography
- We will only concern ourselves with material related to space groups (Volume A)

Using the International Tables for Xray Crystallography

- The International Tables (IT) contain information on all space groups
- Most common information used by crystallographers:
 - Graphical depictions
 - Equivalent positions
 - Special positions and site symmetries
 - Systematic absence conditions

Example of International Tables Entry $(P2_1/c)$

Experimental Determination of Space Group

- Space groups are determined primarily through the examination of systematic absences
- Some space groups are uniquely determined by the systematic absences, others are not
- For ambiguous cases, very often the choice is between a centric and acentric space group, e.g. Pca2₁ and Pbcm

Systematic Absences due to Non-Primitive Lattices

 Non-primitive lattices exhibit systematic absences in the general hkl class of reflection

Centring	Absence Condition for hkl reflections
A	k+l = odd
В	h+l = odd
C	h+k = odd
F	k+l = odd, h+l = odd, h+k = odd
I	h+k+l = odd

Screw Axis Absences

- Screw axes affect the classes of axial reflections: h00, 0k0, and 00l
- The type of screw axis is determined by examining the pattern of the absence
- Example: consider 6 fold screws along c axis:
 - 6₁ or 6₅, 00I: I = 6n + 1, 2, 3, 4, 5 (not divisible by 6)
 - -6_{2} or 6_{4} , 001: I = 3n+1, 2 (not divisible by 3)

 $- 6_3$, 001: I = 2n+1 (not divisible by 2)

Orientation of Glide Planes

- When a glide plane is present one can determine the orientation and type of glide plane from the affected class(es) of reflections
- The 0 index of the affected layer indicates the orientation of the glide's reflection plane
 - Okl: glide reflects across (100)
 - h0l: glide reflects across (010)
 - hk0: glide reflects across (001)

Identification of Glide Planes

- The translational component identifies the type of glide plane
- The translational component causes absences along the affected axes
- Okl:
 - k = odd → b glide; l = odd → c glide; k+l = odd → n glide
- h0l:
 - h = odd → a glide; l = odd → c glide; h+l = odd → n glide

• hk0:

- h = odd → a glide; k = odd → b glide; h+k = odd → n glide

Conventional Settings

- Space group symbols depend on choice of axes
- Minimize ambiguity by following established conventions (unless there is a reason to break from convention)
- International Tables gives conventional settings
 - Lots of different rules
 - Learn through experience
- Some examples (conventional setting **bold**):
 - $P2_1/a$ is the same $P2_1/c$
 - Pcab is the same as Pbca
 - $Pc2_1b$ is the same as $Pca2_1$

Space Group Ambiguities

- Sometimes space group extinctions do not uniquely identify the space group
- In these cases, use some rules of thumb
 - Centric groups are more common than acentric groups. Therefore, try solving with the centric group first
 - Alternative approach: start with acentric group and look for missing symmetry after structure solution

Problems with Systematic Absences

- Sometimes systematic absences which should be there are violated for a couple of reasons
 - Twinning:
 - reflections from an alien lattice occur where absences from primary lattice should be
 - Twinning can cause a mis-indexing of lattice and upset the systematic absence patterns
 - Renninger effect ("double diffraction") can cause apparent violations of systematic absence conditions
- Systematically weaker reflections due to pseudotranslational effects are missed and counted as absences when they should not be. *E.g.* mistaking a primitive cell to be a centred cell

Subtleties in Space Group Determination

- Space groups P3m1, P31m, P3m1, and P31m are symmorphic space groups (no translational symmetry elements)
- Can we differentiate them in some way to identify the space group?
- P3m1, P31m are distinguishable on the basis of their Laue symmetry equivalent intensities
- We cannot distinguish P3m1 from P3m1 nor P31m from P31m (centric/acentric pairs of space groups)
- Similarly we can differentiate P6/m from P6/mmm on the basis of Laue intensity distributions

Conclusion

- Understanding symmetry in general and space groups in particular is essential to successful structure determination
- Incorrect assignment of crystal system and space group constitute serious errors in crystal structure analysis
- Thoughtfulness and experience are essential to becoming proficient in space group assignment