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Introduction

● Notions of reciprocal space and the reciprocal lattice 
are indispensable for understanding X-ray 
Crystallography

● Diffraction by a lattice gives a lattice as a diffraction 
pattern

● There is a precise mathematical relationship between 
the original diffracting lattice and the resulting pattern

● However, this is a (mostly) non-mathematical 
introduction to help you qualitatively understand the 
concepts of reciprocal space and the reciprocal lattice



  

Direct Space & Reciprocal Space

● We live in direct space
● Distances and orientations between isolated objects
● Reciprocal space is a “spatial frequency” space (e.g. 

number of Tim Horton’s per kilometre)
● In NMR time and frequency are related by a Fourier 

transform (units:time t and frequency t-1)
● In X-ray Crystallography direct space and reciprocal 

space are related by Fourier transform (units: 
distance Å and spatial frequency Å-1)



  

Bragg’s Law

● nλ = 2dsinθ
● Rewrite as:
● sinθ = 0.5nλ(1/d) 
● Reciprocal relationship between diffraction 

angle, θ, and the d spacing
● The smaller the d spacing, the higher the 

diffraction angle



  

Reciprocal Quantities

● 1/d = d*
● d* is a reciprocal quantity and typically has units of Å-1

● The ‘*’ in general means a reciprocal space quantity
● A direct space unit cell with parameters a, b, c, α, β, γ 

has a corresponding reciprocal unit cell:  a*, b*, c*, α*, 
β*, γ*

● There are exact mathematical relationships which 
relate the direct space and reciprocal space unit cell 
parameters



  

Reciprocal Relationships

● The relationships between the direct axes and reciprocal 
axes is strictly reciprocal

● Any statement about the two lattices remains true if you 
simply replace all starred (*) quantities by unstarred 
quantities and vice-versa

● a* ┴ bc(face) and a ┴ b*c*(face)
● Any direct axis has as family of reciprocal lattice planes 

which are perpendicular to that axis
● Conversely, any reciprocal axis has a family of direct 

lattice planes which are perpendicular to that axis



  

X-ray Diffraction Patterns

● The X-ray diffraction pattern 
is the reciprocal lattice of a 
crystal’s direct lattice

● Referred to as the intensity 
weighted reciprocal lattice

● Diffraction maxima are 
reciprocal lattice points

● Intensity distribution of 
diffraction pattern is related 
to the electron density 
distribution in the crystal



  

Reciprocal Lattice Points

● Are designated by their Miller index, hkl
● Assigning hkl values to the reciprocal lattice points 

is called indexing the crystal or indexing the 
diffraction pattern

● Reciprocal lattice points represent the diffraction 
from a set of planes designated by the hkl value 
and have a corresponding d* value

● Normal to the set of planes and therefore 
represent a direction in reciprocal space



  

Graphical Construction of Reciprocal 
Lattice from Direct Space Lattice

● For a set of planes in direct 
space, we draw a vector 
normal to these planes

● Terminate the vector at a 
distance 1/d

● For a given lattice row:
● d*(nh,nk,nl) = nd*(hkl)
● Graphic:  

http://www.xtal.iqfr.csic.es/Cr
istalografia/parte_04-en.html



  

Indexing a Diffraction Pattern

● Synthesized reciprocal 
lattice layer (hk0) from 
an actual crystal

● Vertical axis has closer 
packed reciprocal 
lattice points

● Vertical axis has larger 
direct space unit cell 
parameter



  

Indexing a Diffraction Pattern

● First assign the lattice 
directions

● Notice there are 
systematic absences 
along the h00 and 0k0 
reciprocal axes

● Indicative of two screw 
axes (translational 
symmetry elements)



  

Indexing a Diffraction Pattern

● Assign hkl values to each 
reciprocal lattice point

● Use Bragg’s Law to 
calculate the interplanar 
spacing associated with 
each reciprocal lattice point

● Measure angle between a* 
and b* to obtain γ*

● Repeat process with other 
zero layers (0kl and h0l)



  

How to think about this

● Each reciprocal lattice 
point represents both a 
direction and d spacing

● With each reciprocal 
lattice point measured, 
we are “sampling” the 
electron density with 
certain spatial 
frequency in a given 
direction



  

The Swiss Cheese Analogy

● We want to map where all 
the holes are in a block of 
Swiss cheese

● We (virtually) slice the block 
using various thicknesses 
and at various orientations

● We then take these slices 
and use them to map the 
size and shapes of the all  
the holes in the block



  

Resolution of Our Mapping

● Slicing our cheese every 10 mm 
will cause us to miss some of the 
smaller holes in the cheese

● We make finer and finer slices to 
map even the smaller holes within 
the cheese

● Why not just use all fine slices 
rather than both low and high 
resolution slices?

● Analogy breaks down at this point
● In X-ray we need both the low 

resolution data and high resolution 
data



  

Resolution in Reciprocal Space

● The higher the diffraction 
angle, the finer the slice we 
are using to sample our 
crystal’s electron density

● Diffraction condition only 
allows us to sample the 
electron density distribution 
at certain spatial 
frequencies (Bragg’s Law)

● We need to collect both 
high and low resolution data



  

Ewald Construction
● Graphical depiction of  Bragg’s Law
● Circle has radius of 1/λ, centre at C such that 

origin of reciprocal lattice, O, lies on 
circumference

● XO is the X-ray beam, P is the reciprocal 
lattice point (in this case the 202 reflection)

● OP is the reciprocal lattice vector (d*) and is 
normal to the (202) set of planes [aka the 
Scattering Vector]

● Angle OBP is θ, the Bragg angle
● Angle OCP is 2θ
● CP is the direction of the diffracted beam
● BP is parallel to the set of (202) planes
● Any time a reciprocal lattice point falls  on 

the circumference, Bragg’s Law is fulfilled



  

Ewald Sphere

● 2D Ewald construction can be 
generalized to 3D to generate the 
“Ewald Sphere” (also called the 
“Sphere of Reflection”)

● Anytime a reciprocal lattice point is on 
the surface of the sphere Bragg’s Law 
is fulfilled

●  Experimentally, we rotate the crystal 
(lattice) to bring a greater number of 
reciprocal lattice points pass through 
the surface of the sphere

● Image shows the detector slicing 
through part of the Ewald sphere and 
all the lattice points which were laying 
on the surface of the sphere



  

Ewald Spheres and Limiting 
Spheres

● Ewald sphere has a diameter of 2/λ
● Every reciprocal lattice point within that 

distance can be brought into diffracting position
● Limiting sphere has a radius of 2/λ
● The total number of reciprocal lattice points 

within the limiting sphere is approximated by
● N ≈ 33.5(Vcell / λ3)



  

Limiting Spheres of Common 
Radiations

● NMoKα ≈ 33.5Vcell / 0.710733 = 93.3Vcell

● NCuKα ≈ 33.5Vcell / 1.541783 = 9.14Vcell

● Normally, we don’t collect all reflections within 
the limiting sphere.  In practice, we pick some 
maximum value of θ

● Nθ(max) ≈ (33.5 /λ3)Vcellsin3θmax 

● You will always get more data with a shorter 
wavelength



  

Wavelength Imposed Limits

● Maximum value of 
sine function = 1.0

● Imposes certain limits 
on the X-ray 
experiment

● Shorter wavelengths 
allow collection of 
more data points out 
to higher resolution

Quantity CuKα MoKα

λ 1.54178 Å 0.71073 Å

(sinθ/λ)
max 0.648 Å-1 1.407 Å-1

d
min

0.771 Å 0.355 Å

Resolution 
Limit 
(0.92d

min
)

0.71 Å 0.33 Å



  

Practical Considerations for Data 
Collection

● Long axes give densely packed reciprocal lattice 
rows

● Integration is better if peaks aren’t overlapping
● Choose minimum crystal to detector distance as:

DX(mm) = 2 * longest primitive axis (Å) [MoKα]

DX(mm) = 1 * longest primitive axis (Å) [CuKα]

● For non-merohedrally twinned samples, move 
the detector back even farther



  

Experimental Determination of 
Space Group

● Space groups are determined primarily 
through the examination of systematic 
absences in the diffraction pattern

● Systematic absences arise from the 
presence of translational symmetry elements 

Non-primitive lattice centrings

Screw axes (rotation with translation)

Glide planes (reflection with translation)



  

Systematic Absences due to Non-
Primitive Lattices

● Non-primitive lattices exhibit systematic 
absences in the general hkl class of reflections

Centring Absence Condition for hkl reflections

A k+l = odd

B h+l = odd

C h+k = odd

F k+l = odd,   
h+l = odd,
h+k = odd

I h+k+l = odd



  

Screw Axis Absences

● Screw axes affect the 
classes of axial reflections: 
h00, 0k0, and 00l

● The type of screw axis is 
determined by examining 
the pattern of the absence

● Example: In this figure 
there is a 21 axis parallel to 
b*

● 0k0: k = odd



  

Orientation of Glide Planes

● When a glide plane is present one can 
determine the orientation and type of glide plane 
present from the affected class(es) of reflections

● The 0 index of the affected layer indicates the 
orientation of the glide's reflection
– 0kl:  glide reflects across (100)
– h0l: glide reflects across (010)
– hk0:  glide reflects across (001)



  

Identification of Glide Planes

● The translational component identifies the type of glide plane
● The translational component causes absences in along the 

affected axes
● 0kl:

k = odd → b glide;  l = odd →  c glide; k+l = odd →n glide

● h0l:
h = odd → a glide; l = odd → c glide; h+l = odd → n glide

● hk0:
h = odd → a glide; k = odd → b glide; h+k = odd → n glide



  

Example of c glide (h0l: l = odd)
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