Crystal Systems and Crystallographic Point Groups

Paul D. Boyle Department of Chemistry University of Western Ontario

Point Symmetry & Crystallography

- Symmetry is fundamental in crystallography
- Determines what properties a material can have:

Piezoelectricity

Non-linear optical properties

etc.

• Determines how we refine crystal structures and what conclusions we can draw from our structure determinations

Centrosymmetric or non-centrosymmetric

Polar or non-polar group, enantiomeric group

Absolute structure and absolute configuration

Lattices

- Lattices are a regular array of points
- We use **basis vectors** to describe the lattice
- The choice of basis vectors is not unique
- We choose the set of basis vectors which reflects the symmetry present in the lattice
- Transforming from one set of basis vectors does not change the lattice only our description of it

Crystal Systems There are 7 crystal systems and they are named: **Triclinic**, **Monoclinic**, **Orthorhombic**, **Tetragonal**, **Trigonal**, **Hexagonal**, and **Cubic**.

What differentiates one crystal system from another?

The order of its principal or characteristic symmetry

Crystal Systems & Their Symmetries

Crystal System	Lattice & point symmetries	Metric Constraints NOTE: "≠" means "not constrained to be equal to" rather than "not equal to"
Triclinic	1 , 1	$a \neq b \neq c; \alpha \neq \beta \neq \gamma$
Monoclinic	2/m , 2, m	$a \neq b \neq c; \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
Orthorhombic	mmm , mm2, 222	$a \neq b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	4/mmm , 42m, 4mm, 422, 4/m, 4, 4	$a = b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Trigonal rhombohedral setting hexagonal setting	3m , 3m, 32, 3 , 3	a = b = c; $\alpha = \beta = \gamma \neq 90^{\circ}$ a = b \neq c; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
Hexagonal	6/mmm , 6m2, 6mm, 622, 6/m, 6, 6	a = b \neq c; α = β =90°, γ = 120°
Cubic	m3 m, 43m, 432, m3, 23	a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$

Crystallographic Point Symmetries

- Point symmetries are symmetries which all pass through a given point and this point does not change with the application of a symmetry operation
- The symmetry elements which constitute the crystallographic point groups are:
 - Proper rotation axes (n)
 - Mirror planes (m)
 - Inversion centre $(\overline{1}, \text{ or no explicit symbol})$
 - Rotary inversion axes (\overline{n})
- Only n-fold axes where n = 1, 2, 3, 4, 6 are allowed for space filling 3 dimensional objects
- 32 unique crystallographic point groups are obtained from combining the various allowed rotation axes, mirror planes, and inversions
- 11 of the 32 crystallographic point groups are *centrosymmetric*

Categories of Crystallographic Point Groups

- Centrosymmetric (11 of the 32 point groups)
- Non-centrosymmetric (non-exclusive categories)

Enantiomorphic: Point groups which contain only proper rotation axes

- → Enantiopure compounds can only crystallize in crystals which have these point symmetries
- SHELXL hint: Flack parameter should be refined, absolute configuration determination is possible

Polar: Point groups which have a "polar" sense to them

- → Polar groups are non-centrosymmetric, but may have symmetry elements of the second kind
- → Samples which crystallize in these point group may be racemic
- SHELXL hint: Flack parameter should be refined, absolute structure determination is possible but <u>absolute configuration</u> cannot be determined if point group contains symmetry elements of the second kind

Laue Groups and Holohedries

- **Laue groups:** the 11 centrosymmetric groups
 - Symmetry of the diffraction pattern as determined from the observed intensities
 - Matches the space group without any translations and adding a centre of symmetry
 - A crystal system can have more than one Laue group
- **Holohedry:** When the point group of a crystal is identical to the point group of its lattice
 - There are 7 holohedral point groups which correspond to the 7 crystal systems
 - Holohedries are always centrosymmetric
- All holohedries are Laue groups, but not all Laue groups are holohedries

Proper Rotation Axes

- Rotation about an axis by 360°/n.
- Symmetry operation of the first kind
- Doesn't change handedness of object

Mirror plane

- Creates a reflected object
- Symmetry element of the second kind
- Changes handedness of object

Inversion Centre

- Transforms x, y, z into \overline{x} , \overline{y} , \overline{z}
- Symmetry element of the second kind
- Changes handedness of object

Rotary Inversion Axis

- Rotation of 360°/n followed by inversion
- Symmetry element of the second kind
- Changes handedness of object
- 1 is equivalent to an inversion centre
- $\overline{2}$ is equivalent to a mirror plane

Symmetry Notation

- Spectroscopists use Schoenflies notation to describe symmetry (e.g. C_{2v}, D_{4h})
- Crystallographers use Hermann-Mauguin notation (International notation)
- Was introduced by Carl Hermann in 1928, modified by Charles-Victor Mauguin in 1931
- Adopted for the 1935 edition of the International Tables for Crystallography
- Hermann-Mauguin notation is preferred for crystallography
 - Easier to add translational symmetry elements
 - Directions of symmetry axes are specified
- Quick things to note:
 - Interpretation of Hermann-Mauguin symbols depends on the crystal system
 - "n/m" notation means mirror plane perpendicular to n-fold axis
 - Hermann-Mauguin symbols have both "long" and "short" forms
 - Not all symmetry elements present are symbolized, some are left implicit

Understanding Hermann-Mauguin Notation for Point Groups

Crystal System	1 st Position	2 nd Position	3 rd Position	Point Groups
Triclinic	Only one position, den	oting all directions in cry	stal	1 , 1
Monoclinic	Only 1 symbol: 2 or $\overline{2}$	to Y (<i>b</i> is principal axis)		2/m , 2, m
Orthorhombic	2 and/or $\overline{2} \parallel$ to X	2 and/or 2 ∥ to Y	2 and/or 2 ∥ to Z	mmm , mm2, 222
Tetragonal	4 and/or 4 ∥ to Z	2 and/or $\overline{2} \parallel$ to X and Y	2 and/or 2 ∥ to [110]	4/mmm , 42m, 4mm, 422, 4/m, 4√, 4
Trigonal	3 and/or $\overline{3} \parallel$ to Z	2 and/or 2 ∥ to X, Y, U		3m , 3m, 32, 3 , 3
Hexagonal	6 and/or 6 ∥ to Z	2 and/or 2 ∥ to X, Y, U	2 and/or $\overline{2}$ along [1 $\overline{1}$ 0]	6/mmm , 6m2, 6mm, 622, 6/m, 6, 6
Cubic	2 and/or $\overline{2} \parallel$ to			m 3 , 23

Choosing the Correct Crystal System

- Do not assume the metric relations indicate the correct point group and crystal system!!!
- Correctly identify the Laue group symmetry of the diffraction pattern (equivalent intensities, R_{sym})
- The Laue symmetry indicates the crystal system of your sample
- Correct Laue group assignment narrows space group choices

Space Groups

- Space groups vs Point groups
 - Point groups describe symmetry of isolated objects
 - Space groups describe symmetry of infinitely repeating space filling objects
- Space groups include point symmetry elements