

Canadian National Committee for Crystallography http://xtallography.ca/

OLEX2 – Modeling disorder: Fixed positions

Louise Dawe Wilfrid Laurier University

and

Jamie Ritch University of Winnipeg

Canadian National Committee for Crystallography <u>http://xtallography.ca/</u>

Data from Charlotte Stern

Check out the OLEX2 youtube channel for an alternate way to tackle this: <u>https://www.youtube.com/watch?v=LkIPOs-KEFQ</u>

Another good resource:

http://web.mit.edu/pmueller/www/ACA2007/WK01/Disorder.pdf

Navigate to SplittingCF3 folder. File \rightarrow Open "Example5.ins"

14		Olex2	- 0 ×	
File	Edit View Structure Mode Tools Model Select Help			
	Open C:\Users\Lou\Desktop\CCCW17\Olex2 Workshop\Example 0 - Structure Solution\Example0 C:\Users\Lou\Desktop\Maly_June_2017\n16053 Report Stuff\n16053_CIF.cif C:\Users\Lou\Desktop\Old Data\b16146\June_2017\Crystal_1\b16146_crystal1		Start	^
	C:\Users\Lou\Desktop\Old Data\b16146\June_2017\Crystal_1\b16146_crystal1.p4p C:\Users\Lou\Desktop\Old Data\b16146\June_2017\Crystal_2\b16146_crystal2 C:\Users\Lou\Desktop\Old Data\b16146\June_2017\Crystal_2\b16146_crystal2.p4p C:\Users\Lou\Desktop\Old Data\b16146\twin\b16146		Welcome to Olex2! CHANGELOG Open Sucrose THPP Co110 ZP2 Water 183 Timmy Documentation: Online Static PDF All Inline Help	
	C:\Users\Lou\Desktop\Uid Data\b 10140\twin\b 10140.p4p Save (Ctrl+S) Save With Sorting Save model as (Ctrl+Shift+S)		Tutorials Extension Modules	
	Close Exit		Settings News Please cite us in your publications:	
Load We a Plea	ding AutoChem_40 (Version Sun May 20 16:49:29 2018)Welcome to are grateful to our users for testing and supporting Olex2 ase find the link to credits in the About box	Olex2	olomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete tructure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341.	
Dolo OLEX J. i	omanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Purk K2: A complete structure solution, refinement and analysis pro Appl. Cryst., 42, 339-341.	schmann, H., ogram (2009).	Setting up Olex2 and everything else you need to get going	
LOAG File is clo:	aing MARP (version Sun May 20 16:49:43 2018)OK. B Sed		OlexSys	~

Looks like all of our work is done! Coffee?

No hydrogens = No coffee

<

Notice two things here

- 1. Yes, we missed a bunch of hydrogens
- 2. There are three residual peaks directly between the F-atoms of this -CF₃ group

- 1. Looks good, but
- 2. Now there are residual peaks between F-atoms in multiple -CF₃ groups!
- Let's deal with one of these groups; the highest residual peaks (Q1, Q2, Q4) are associated with the group comprised of C10, F10, F11, F12.

I'm going to tidy my display to work on this (mouse scroll down, or "Peak & Uiso Sliders" workbar, to show only the top four peaks and reorient my molecule to carefully inspect this group.)

Also, "Ctrl A", then select C8, C10, F10, F11, F12, then "View" and "Quick Drawing Styles" to convert everything else to a line

(You don't have to do this, but it makes my slide look better!)

Next, select C10, F10, F11, F12 in this order (or at least, C10 first, and then the three F atoms.) Then type:

mode fit -s=1

Note that the C8-C10 bond is now selected as well (even though we didn't select C8.)

Press the ESC key to exit

Right click on the C8-C10 bond once, and then use your left mouse key to rotate around this bond until the second set of F-atoms match up with your residual electron density peaks. Then hit esc

Only C8 has remained anisotropic. (You can use "Fn F3" to remove the distance labels.)

Go back to your Work menu and Sort your atoms.

Then type "edit ins" at the prompt

Notes: Global RIGU (I'm deleting it), second free variable of 0.75, and two parts at bottom of the file with occupancies tied to the second free variable

Close your .ins

File Edit Format View Help

TITL disorder1 in Pbca										
REM Solution 1 R1 0.144 Rweak 0.004, Alpha = 0.0755 i	n Pbc	а								
CELL 0.71073 15.0844 11.1365 27.7091 90 90 90										
ZERR 8 0.0024 0.0018 0.0045 0 0 0										
LATT 1										
SYMM 0.5-XY.0.5+Z										
SYMM -X.0.5+Y.0.5-7										
SYMM 0 5+X 0 5-Y -7	H15A	2		0.63802	0.68612	0.39892	11.00000	-1.20000		
SEAC C H N O E Cd	H15B	2		0.71711	0.63780	0.36572	11.00000	-1.20000		
INTT 128 144 16 32 96 8	AFIX	0		0 00704	0 53366	0 40670	11 00000	0.00055	0 02722	0 07
RTCU	0.00	102	0	0.69/84	0.53366	0.42679	11.00000	0.02955	0.03/32	0.03
N100	0.00	22	-0.	00140 0	.00142					
1.6.10		25		0 725/18	0 16001	0 11360	11 00000	1 20000		
L.S. 10	H16B	2		0.74321	0.57731	0.44572	11.00000	-1.20000		
PLAN 20	AFTX	D.		0.74521	0.57751	0.44572		1.20000		
TEMP -120	PART	1					/	\backslash		
BOND	F10	5		0.54794	0.10701	0.30649/	21.00000	0,13570		
LISI 6	F11	5		0.62770	0.02720	0.35801	21.00000	0.13234		
MORE -1	F12	5		0.49989	-0.02748	0.34778	21.00000	0.09000		
CONF	PART	0								
fmap 2	PART	2								
acta 52	F10a	5		0.48980	0.04404	0.31955	-21.00000	0.13570		
WGHT 0.0613 31.275499	F11a	5	/	0.62024	0.09781	0.32720	-21.00000	0.13234		
FVAR 0.183 0.75	F12a	5	/	0.56930	-0.03864	0.36784	21.00000	9.09000		
REM <olex2.extras></olex2.extras>	HKLF	4					\setminus			
REM <hklsrc "%.\\example5.hkl"=""></hklsrc>							\smile			
REM	END									

Next, let's apply restraints

- To to Tools \rightarrow Shelx Compatible Restraints \rightarrow SADI
- Select all C-F bonds in the group we are modelling and "GO"
- (I switched back to the default view with "Fn F2" for white background and "Ctrl T" to see text in background)
- Note the formatting of the restraint; each sequential pair is restrained to have the same
- distance

Note the formatting of the restraint; each sequential pair is restrained to have the same distance

We can select individual atoms in a pairwise manner and apply the same restraint. Let's do this with each of the 1,4 pairs in our disorder group.

If we want to do this with the 1,3 pairs we encounter a problem with using a GUI!

We can add these by editing our .ins (note that shelx doesn't "do" angle restraints, so we get around this with SADI)

File Edit Format View Help	
TITL disorder1 in Pbca	
REM Solution 1 R1 0.144 Rweak 0.004, Alpha = 0.0755 in Pbca	
CELL 0.71073 15.0844 11.1365 27.7091 90 90 90	
ZERR 8 0.0024 0.0018 0.0045 0 0 0	
LATT 1	
SYMM 0.5-X,-Y,0.5+Z	
SYMM -X,0.5+Y,0.5-Z	
SYMM 0.5+X,0.5-Y,-Z	
SFAC C H N O F Cd	
UNIT 128 144 16 32 96 8	 CF distance restraints
SADI F12a C10 F11 C10 F11a C10 F10 C10 F10a C10 F12 C10	1 4 distance restraints
SADI F12 F11a F10a F11 F10 F12a <	
SADI F10 F11 F11 F12 F12 F10 F10a F11a F11a F12a F12a F10a	1,3 distance restraints
L.S. 10	
PLAN 20	
TEMP -120	
BOND	

I'm still not ready to hit "Refine"

Let's think about how those 1,4 displacements should "look".

Select the 1,4 F-atoms, one pair at a time, and introduce "Shelx Compatible Constraints" EADP after each selection.

(WHOA! Just noticed that there is a LIST 6 instructions in this ins! This instructs the kind of structure factor output that is generated. LIST 6 is not compatible with many things; let's edit this to LIST 4)

Displacements, distances and effectively angles, are now managed. Let's hit "Refine".

Example5 File Edit Format View Help TITL disorder1 in Pbca REM Solution 1 R1 0.144 Rweak 0.004, Alpha = 0.0755 in Pbca CELL 0.71073 15.0844 11.1365 27.7091 90 90 90 ZERR 8 0.0024 0.0018 0.0045 0 0 0 LATT 1 SYMM 0.5-X,-Y,0.5+Z SYMM -X,0.5+Y,0.5-Z SYMM 0.5+X,0.5-Y,-Z SFAC C H N O F Cd UNIT 128 144 16 32 96 8 SADI F12a C10 F11 C10 F11a C10 F10 C10 F10a C10 F12 C10 SADI F12 F11a F10a F11 F10 F12a SADI F10 F11 F11 F12 F12 F10 F10a F11a F11a F12a F12a F10a EADP F10a F11 EADP F12 F11a EADP F12a F10 L.S. 10 PLAN 20 TEMP -120 BOND LIST 6 MORE CONF fmap 2

Sigh...those 1,4 restraints...and those new residual density peaks...

If only Mike Katz was here...

In the meantime, change the isotropic atoms to anisotropic, and refine again.

	Olex2 – 🗇 🗙
File Edit View Structure Mode Tools Model Select Help	
	Example5 Pbca C:\Users\Lou\Desktop\CCCW\CCCW19\May_27\SplittingCF3\Example5.res
	C ₁₆ H ₁₈ N ₂ O ₄ F ₁₂ Cd 🛥 🛛 💋 🔛 🛄 💢
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	d min (Mo) 0.80 V/σ 19.9 Rint 12.23% complete 100% Shift -3.402 Max Peak 1.9 Min Peak -0.8 GooF 1.220
	Home Work View Tools Info
	Quick Drawing Styles
	Image: Second
	100 Style: matt.glds
	Ø Bond r: Set 80 Colour: elements ▼
	Graphical objects:
	Align <u>View</u> <u>Plane</u> Lock all Zoom Rotation Translation
	Add Fog Clear Fog
	Dack V
	Symmetry Generation
	Geometry
Υ.	Rotate

Well, anisotropic refinement dealt with those residual peaks, but is this a good model for what is taking place here?

We are done with this example, but here are a few things to consider:

- 1. I went in and manually changed the EADP constraints to RIGU restraints but this does not really improve the model.
- 2. You could go in and further model this with a third (and fourth, and fifth) orientation, tying the occupancies to a SUMP instruction (there is no convenient way to do this in OLEX2; you have to directly edit your ins.)
- 3. What about the other $-CF_3$ groups?
- 4. Everything would have been tidier if I had rotated my original second component by 180° instead of 60°.

Examp C:\Users\Lou\De		CCW19\May 2	7\SplittingC	F3\Examp	Pbca
C ₁₆ H ₁₈ N ₂ O ₂	4F12Cd S		/	X 🖻	
a = 15.084(2) b = 11.1365(18) c = 27.709(5)	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$	Z = 8 Z' = 1 V = 4654.8(1	3) <i>R</i>	1 R ₂	5.40 <u>%</u> 11.71 %
^{d min (Mo)} 0. ^{Shift} 0.1	80 ^{I/o} 50 ^{Max Peak}	19.9 Rint 1.3 Min Pe	<u>12.23</u>	% ^{comple} .8 ^{GooF}	^{te} 100% 1.164
Home	Work	View	Tools	5	nfo
Quick Draw	ving Styles				
0 🝌 🚫	🕦 🍌 😏	i 🦯 📡	Legend 🗸	Default	Light
1 Atom r: Se	t		00 Style:	matt.glds	v
1 Bond r: Se	t		0 Colour:	elements	~
O Graphical obje	ects: 🔟 🚺	_ 🗊 🗊			
Align <u>View</u>	Plane Lo	ockall Zoo	om 🗌 Rota	ation	Translation
Add Fog Clear	<u>r Foq</u>				1
Front					0.9
Back	Y.				3.6
Symmetry	Generatior	ı			
Geometry					

Rotate

If I was going to split this into three components:

- 1. Go back to isotropic refinement. Run a round of least squares. Bring back those third component residual electron density peaks.
- 2. I introduced the next component by directly converting the three peaks to F atoms, and manually named them to F10B, F11B, F12B.
- 3. "Sort" and then edit ins.
- 4. Delete the 1,4 SADI restraints. Introduce a new set of C-F and 1,3 F-F SADI restraints for the B component (carry on to the next line using =). Combine all F atoms into a single RIGU line.
- 5. Find F10B, F11B, F12B, and move them to the bottom of the .cif, under a PART 3.
- For PART 2, change all of the "-21.000" to "31.000"; for PART 3 change all of the "11.0000" to "41.000"
- Go back to your FVAR line and change the second FVAR to 0.5, then add in a third with 0.3 and fourth with 0.2
- 8. Finally, add in the following line with your other instructions (this requires that the sum of the free variables add up to one.)

SUMP 1.0 0.001 1.0 2 1.0 3 1.0 4

9. Hit save. Close the .ins. Hit Refine. Good luck to you. History is still there in case of disaster!

This is before I hit refine. The next slide is what my .ins looks like, just before I hit refine.

📕
File Edit Format View Help
SYMM -X,0.5+Y,0.5-Z
SYMM 0.5+X,0.5-Y,-Z
SFAC C H N O F Cd
UNIT 128 144 16 32 96 8
SADI F12A C10 F11 C10 F11A C10 F10 C10 F10A C10
F10B C10 F11B C10 F12B C10

F12 C10 =SADI F10 F11 F11 F12 F12 F10 F10A F11A F11A F12A F12A F10A = F10B F11B F11B F12B F12B F10B RIGU F10 F10A F10B F11 F11A F11B F12 F12A F12B

SUMP 1.0 0.001 1.0 2 1.0 3 1.0 4

L.S. 10

- PLAN 20
- TEMP -120
- BOND
- LIST 4
- MORE -1
- CONF
- fmap 2
- acta 52
- WGHT 0.0359 29.634201
- FVAR 0.18368 0.5 0.3 0.2
- REM <olex2.extras>
- REM <HklSrc "%.\\Example5.hkl">

REM </olex2.extras>

		0.00110 0				
AFIX	23					
H16A	2	0.72559	0.46002	0.41364	11.00000	-1.20000
H16B	2	0.74317	0.57743	0.44573	11.00000	-1.20000
AFIX	0					
PART	1					
F10	5	0.52945	0.10426	0.30518	21.00000	0.06323
F11	5	0.63609	0.05060	0.34907	21.00000	0.06735
F12	5	0.50936	-0.03925	0.35458	21.00000	0.05607
PART	2					
F10A	5	0.48861	-0.01254	0.33930	31.00000	0.05231
F11A	5	0.58560	0.11146	0.30990	31.00000	0.08463
F12A	5	0.61935	0.00110	0.36795	31.00000	0.05323
PART	3					
F10B	5	0.49590	0.04800	0.32080	41.00000	0.05000
F11B	5	0.63050	0.10340	0.32540	41.00000	0.05000
F12B	5	0.56990	-0.03840	0.36780	41.00000	0.05000
PART	0					
HKLF	4					
END						

Post refine. Still some peaks. Hover over the atoms to see their occupancies. Let's go anisotropic.

Ugh. Let's go home.

(No, seriously, I could probably "fix" this with some ISOR restraints, or EADP constraints, or changing the default RIGU esd to something much smaller. But that doesn't make it "right".)

a min (Mo) Shift _	[™] 0.80	ax Peak	19.9 Kint 1 3 Min Peak	-0.8	complete GooF	100%
Home	Wo	rk	View	Tools	Inf	0
HARt						
AutoCh	em 3.1					
Images						
Maps						
Chemic	al Tools					
Olex2 C	onstrain	ts Rest	raints			
Shelx C	ompatib	le Cons	traints			
Shelx C	ompatib	le Resti	raints			
O SADI	*	0.02			ç	0
One Ator between t This featu	n Selected these bound a re allows to 'r	All 'outgoing' toms will als regularise' er	bonds will be restra to be restrained - wintities like spherical	ined to be the s th double the e. counterions.	same, all dis s.d.	tances
Two or n	nore Bonds	Selected T	he selected bonds	will be restraine	d to be the	same.
Three At be restrai	oms in a ro ned to be the s	W The bond same.	is between the two	atoms bound to	the central	atoms will
Pairwise pairs of at	atom select	tion If an ever strained to I	ven number of atoms be the same, depend	is selected, the ling on the orde	e distances r of selectio	between m.
Hydrog	en Atom	c				

Canadian National Committee for Crystallography <u>http://xtallography.ca/</u>

Solvent or Anion Disorder: Fixed Positions

Check out the OLEX2 youtube channel for a similar example: <u>https://www.youtube.com/watch?v=hCI4VdQ8iBg&list=PLJgQksgBIp</u> <u>eAMDW5PVOI0r9EqFZ8p-Y4_&index=7&t=0s</u>

This is the finished structure. Toluene looks disordered. Hover over any atom; occupancy is 0.5, and it is is PART -1 Why?

Right click on the main molecule (not toluene): Selection \rightarrow Select Molecule

I then changed my style to "Wireframe", deselected "Show hydrogen", selected "Show cell axes", and the went to: Display \rightarrow Symmetry Elements... \rightarrow OK

Looking at this structure in Mercury:

Space group is P-1 The only symmetry is inversion

Toluene is "sitting on" an inversion centre, yet its molecular symmetry does not exhibit inversion.

Back in OLEX2

- 1. Delete toluene, set your rounds of least squares to five, set your peaks to 25, and refine.
- 2. Assemble your fragments.
- 3. Display only your top four peaks, and type "grow".

Back in OLEX2

- 1. Delete toluene, set your rounds of least squares to five, set your peaks to 25, and refine.
- 2. Assemble your fragments.
- 3. Display only your top four peaks, and type "grow".
- 4. Imagination!

Back in OLEX2

- 1. Delete toluene, set your rounds of least squares to five, set your peaks to 25, and refine.
- 2. Assemble your fragments.
- 3. Display only your top four peaks, and type "grow".
- 4. Imagination! (No seriously now, how do I make it do that?)

OLEX2 makes FRAG/FEND "simple"

From the shelx manual:

FRAG code[17] a[1] b[1] c[1] α [90] β [90] γ [90] Enables a fragment to be input using a cell and coordinates taken from the literature. Orthogonal coordinates may also be input in this way. Such a fragment may be fitted to the set of atoms following an AFIX instruction with m=code (code must be greater than 16); there must be the same number of atoms in this set as there are following FRAG, and they must be in the same order. Atoms with zero coordinates are not fitted, but new coordinates are generated for these atoms. The atom names, sfac numbers, sof and Uij of the FRAG fragment are ignored, only the coordinates are used. A FRAG fragment may be given anywhere between UNIT and HKLF or END or in an 'include' file, and must be terminated by a FEND instruction, but must precede any AFIX instruction which refers to it. This rigid fit is often a preliminary to a rigid group refinement (AFIX 6).

Tools \rightarrow FragmentDB \rightarrow Find toluene from the list

Next: PART = -1; Occupancy = 0.5 (Why?)

ools Model Select Help

malba	C w\AppData\Roan	ning\01925a79	4\samples\malb	$P\bar{1}$
C _{29.5} H ₂₅ Cl	N2OPPd 😂	X	/ 😑 🗍	TWINS PRON 💢
a = 10.551(2) b = 14.251(3) c = 9.551(2)	$\alpha = 99.77(2)^{\circ}$ $\beta = 105.10(2)^{\circ}$ $\gamma = 104.77(2)^{\circ}$	Z = 2 Z' = 1 V = 1297.1(5)	R ₁ wR ₂	6.69 <u>%</u> 21.65 %
d min (Mo) 0 Shift 0.2	.71 ^{/σ} 224 ^{Max Peak}	32.1 Rint 3.3 ^{Min Peak}	n/a ^{com} -0.8 ^{Goo}	^{plete} 100% F 1.834
WARNING: Input	data appear to be	merged: CIF file w	Toolc	Info
потпе	WORK	View	10015	nio
HARt				
ReportPlus	S			
Fragment	DB			
Toluene, C7H	18			∽ reset
0				
Fit!				Edit
O PART: -	1 🗧 Free Va	ariable: 1	Occupancy: 0.	5 = 10.5
O Use a resid	lue: 🗋 Residue	Class: TOL	Invert: 🗌 🛛 Cald	diate DFIX:
Replace Me	ode: No Re	straints: Rig	id Group: 🗌	Revert Fit
① List of most	disagreeable res	traints:	3	Short Full
Obser-	ved Targ	get Error	Sigma Re	straint

х

Tools \rightarrow FragmentDB \rightarrow Find toluene from the list

```
Next: PART = -1; Occupancy = 0.5 (Why?)
```

Directly from Peter Mueller: <u>http://web.mit.edu/pmueller/www/ACA2007/WK01/Disorder.pdf</u>

Disorder Involving Special Positions

Imagine a molecule sitting on or near a special position without fulfilling the geometry of that symmetry element (*e.g.* toluene on inversion center).

Two possible ways of describing: either use different space group without the symmetry element(s) in question or refine a disorder about the special position.

Refinement is easy: you need only one set of coordinates, as the second one can be generated from the first by means of the symmetry operator(s) corresponding to the special position in question. Therefore instead of **PART 1** and **PART 2** you only need one component, which has to be placed in **PART -1**.

The ratio does not need to be refined as it corresponds to the multiplicity of the symmetry operator (0.5 for an inversion center, mirror and twofold axis; 0.3333 for a threefold, 0.25 for a fourfold and 0.1667 for a sixfold). Combinations of symmetry operators are possible, of course.

Once you have selected toluene from the list, hit "Fit"

A "shadow" toluene will appear.

Click on one atom in the shadow, and then click on one of your electron density peaks that you want to line up with the shadow.

c = 9.551(2)	y = 104	4.//(2)* V =	1231.1(3)	VV/132	21	.65
d min (Mo)	0.71 ^{1/σ}	32.	1 Rint	n/a ʻ	omplete	100
Shift	0.224 Max	Peak 3.	3 Min Peak	-0.8	GooF	1.83
WARNING: In	put data appea	ar to be merge	d: CIF file wil	ll be incomple	te	
Home	Wor	k Vie	ew	Tools	Info)
HARt						
Report	Plus					
Fragme	entDB					
0 Toluene,	, C7H8				~	reset
Toluene,	C7H8	ĺ	\downarrow		~	reset Edit
Toluene, Toluene, Fitt PART:	-1 ÷	Free Variable:		Occupancy:	0.5 ⇒	Edit
7 Toluene, 7 Fitt 7 PART: 7 Use a r		Free Variable: esidue Class:		Occupancy:	v 0.5 ⇒ Calculate DF	Edit
 Toluene, Fitt PART: Use a r Replace 	_1 ÷ residue: □ Rr e Mode: □	Free Variable: esidue Class: No Restraints:		Occupancy:	0.5 => Calculate DF	Edit
 Toluene, Fit! PART: Use a r Replace List of m 	C7H8	Free Variable: esidue Class: No Restraints: uble restraints:		Occupancy: Invert: C Group: C	0.5 => Calculate DF Re Short	Edit 10.5 IX: Full
 Toluene, Fitt PART: Use a r Replact List of rr Ot 	1 ÷ residue: □ Ro e Mode: □ nost disagreea oserved	Free Variable: esidue Class: No Restraints: uble restraints: Target	1 to Rigid	Occupancy: Invert: C Group: C Sigma	 ✓ 0.5 ⇒ Calculate DF Re Short Restraint 	Edit 10.5 IX: Full

Twinning

You are in *mode* MODE_DISP Press the ESC key to exit. Once you have selected toluene from the list, hit "Fit"

A "shadow" toluene will appear.

Click on one atom in the shadow, and then click on one of your electron density peaks that you want to line up with the shadow.

Keep selecting one shadow peak (green) and one electron density peak (orange) until you get a reasonable fit. This took me three clicks.

Once you have selected toluene from the list, hit "Fit"

A "shadow" toluene will appear.

Click on one atom in the shadow, and then click on one of your electron density peaks that you want to line up with the shadow.

Keep selecting one shadow peak (green) and one electron density peak (orange) until you get a reasonable fit. This took me three clicks.

Then hit "Esc"

c = 9.551(2)	$\gamma = 104.77(2)^{\circ}$	V = 1297.1(5)	WIX2	21.00 70
min (Mo) 0	.71 ^{Vo}	32.1 Rint	n/a 😋	omplete 100%
^{ihift} 0.2	24 Max Peak	3.3 Min Peak	-0.8 ^G	^{00F} 1.834
VARNING: Input	data appear to be	merged: CIF file w	ill be incomplet	e
Home	Work	View	Tools	Info
HART				
ReportPlus	5			
Fragment)B			
Toluene C7H	8			reset
0				TOUCT
Fitt		\bigcirc		Edit
PART: -	Free Va	ariable: 1 📫	Occupancy:	0.5 => 10.5
0 Use a resid	ue: Residue	Class: TOL	Invert: Ca	alculate DFIX:
B Replace Mo	de: No Re	straints: 🗌 Rigi	d Group: 🗌	Revert Fit
D List of most	disagreeable res	traints:	[Short Full
Observ	ed Tar	get Error	Sigma I	Restraint
-	-		-	-
101				
704				
Twinning				

To keep things ordered, I then named the tolune C50 – C56, and sorted my atoms, so that I could see what all this clicking did in my instruction file.

malbac.ins - Notepad File Edit Format View Help TITL r26 REM r26 REM 384 parameters refined using 6 restraints CELL 0.71078 10.551 14.251 9.551 99.77 105.1 104.77 ZERR 2 0.002 0.003 0.002 0.02 0.02 0.02 LATT 1 SFAC C H Cl N O P Pd UNIT 59 50 2 4 2 2 2 DFIX 1.51 C50 C51 DANG 2.42 C51 C53 FLAT C50 C51 C52 C53 C54 C55 C56 DFIX 1.39 C51 C52 C51 C56 C53 C54 DANG 2.39 C52 C54 DFIX 1.38 C52 C53 C54 C55 C55 C56 RIGU C50 > C56 SADI C51 C52 C52 C53 C53 C54 C54 C55 C55 C56 C56 C51 DANG 2.41 C51 C55 SADI 0.04 C51 C55 C51 C53 C56 C54 C52 C56 C53 C55 C52 C54 DANG 2.4 C53 C55 C54 C56 SIMU C50 > C56 SADI 0.04 C50 C56 C50 C52 PART -1 DANG 2.52 C50 C52 C50 C56 C С C С C С C

C50	1	0.22881	0.51794	-0.40920	10.50000	0.05000
C51	1	0.07692	0.50459	-0.47142	10.50000	0.05000
C52	1	0.03148	0.57907	-0.52536	10.50000	0.05000
C53	1	-0.10717	0.56792	-0.58177	10.50000	0.05000
C54	1	-0.20480	0.48040	-0.58520	10.50000	0.05000
C55	1	-0.16180	0.40549	-0.53257	10.50000	0.05000
C56	1	-0.02268	0.41731	-0.47593	10.50000	0.05000
HKLF	4					

Close your .ins and Refine.

Make your toluene anisotropic, and Refine.

Add your hydrogen atoms, and Refine.

If you "grow", OLEX2 does not show you the other "half", but if you open your structure in Mercury, or if you go to "View \rightarrow Symmetry Generation \rightarrow Packing \rightarrow Pack to limits" (for example), your full disorder model will be visible.

