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Lattices

● Lattices are a regular array of 
points

● We use basis vectors to 
describe the lattice

● The choice of basis vectors is 
not unique

● We choose the set of basis 
vectors which reflects the 
symmetry present in the lattice

● Transforming from one set of 
basis vectors does not change 
the lattice only our description 
of it



  

The Unit Cell

● Any 3 non-coplanar lattice translations may 
be used to define a unit cell (basis vectors)

● The basis vectors are referred to as a, b, c
● The angles between the vectors are referred 

to as α, β, γ



  

Primitive and Non-Primitive Unit Cells

● If the basis vectors are the 3 shortest lattice 
translations or if they describe a cell of equal 
volume, the lattice is referred to as a 
“primitive” lattice

● Lattice symbol is P
● A primitive lattice has one lattice point per 

unit cell
● “Non-primitive” lattices have more than one 

lattice point per unit cell



  

Non-primitive Lattice Translation 
Vectors

Designation Extra lattice point(s) Mnemonic Device Centring Vector

A bc face Abc (0, ½, ½)

B ac face aBc (½, 0, ½)

C ab face abC (½, ½, 0)

F each face centre (0, ½, ½); (½, 0, ½); 
(½, ½, 0)

I body centre (½, ½, ½)

R (hexagonal setting) (⅔, ⅓, ⅓); (⅓, ⅔, ⅔)

● Choosing a non-primitive vs. primitive lattice is a 
matter of convention and observable symmetry

● It is always possible to choose a primitive triclinic 
lattice

● Choose the lattice and crystal system which 
conforms to the observable symmetry



  

Different Unit Cells

● Buerger Cell: a unit cell comprised of the 3 
shortest non-coplanar lattice vectors

● Niggli (or reduced) cell:  a uniquely defined 
Buerger cell

● All primitive and non-primitive lattices can be 
reduced to their unique Niggli reduced cell

● Algorithm:  Delaunay reduction gives the 
Niggli cell



  

Conventional Unit Cell

● Basis vectors define a right-handed system
● Unit cell edges lie along symmetry directions 

in the crystal
● Cell is the smallest cell compatible with 

conditions 1 and 2
● Niggli cells can always be transformed to a 

conventional setting (and vice versa)



  

Crystal Systems

There are 7 crystals systems and they are named: 
Triclinic, Monoclinic, Orthorhombic, 
Tetragonal, Trigonal, Hexagonal, and Cubic.

What differentiates one crystal system from 
another?

The order of its principal or characteristic 
symmetry



  

Crystal Systems & Their Symmetries

Crystal System Lattice & point symmetries Metric Constraints
NOTE: “≠” means “not constrained to 
be equal to” rather than “not equal to”

Triclinic 1, 1 a ≠ b ≠ c; a ≠ b ≠ g

Monoclinic 2/m, 2, m a ≠ b ≠ c; a = g = 90º, b ≠ 90º

Orthorhombic mmm, mm2, 222 a ≠ b ≠ c; a = b = g =90º

Tetragonal 4/mmm, 42m, 4mm, 422, 4/m, 4, 
4

a = b ≠ c; a = b = g = 90º

Trigonal
rhombohedral setting
hexagonal setting

3m, 3m, 32, 3, 3
a = b = c; a = b = g ≠ 90º
a = b ≠ c; a = b =90º, g = 120º

Hexagonal 6/mmm, 6m2, 6mm, 622, 6/m, 6, 
6

a = b ≠ c; a = b =90º, g = 120º

Cubic m3m, 43m, 432, m3, 23 a = b = c; a = b = g = 90º



  

Crystallographic Point Symmetries

● Point symmetries are symmetries which all pass through a given point 
and this point does not change with the application of a symmetry 
operation

● The symmetry elements which constitute the crystallographic point 
groups are:

– Proper rotation axes (n)

– Mirror planes (m)

– Inversion centre (1, or no explicit symbol)

– Rotary inversion axes (n)

● Only n-fold axes where n = 1, 2, 3, 4, 6 are allowed for space filling 3 
dimensional objects

● 32 unique crystallographic point groups are obtained from combining the 
various allowed rotation axes, mirror planes, and inversions

● 11 of the 32 crystallographic point groups are centrosymmetric



  

Laue Groups and Holohedries

● Laue groups: the 11 centrosymmetric groups 

– Symmetry of the diffraction pattern as determined from the 
observed intensities

– Matches the space group without any translations and 
adding a centre of symmetry

– A crystal system can have more than one Laue group
● Holohedry: When the point group of a crystal is identical to the 

point group of its lattice

– There are 7 holohedral point groups which correspond to 
the 7 crystal systems

– Holohedries are always centrosymmetric
● All holohedries are Laue groups, but not all Laue groups are 

holohedries



  

Proper Rotation Axes

● Rotation about an 
axis by 360º/n.

● Symmetry 
operation of the 
first kind

● Doesn't change 
handedness of 
object



  

Mirror plane

● Creates a reflected 
object

● Symmetry element 
of the second kind

● Changes 
handedness of 
object



  

Inversion Centre

● Transforms x, y, z 
into x, y, z

● Symmetry element 
of the second kind

● Changes 
handedness of 
object



  

Rotary Inversion Axis

● Rotation of 360º/n 
followed by inversion

● Symmetry element of the 
second kind

● Changes handedness of 
object

● 1 is equivalent to an 
inversion centre

● 2 is equivalent to a mirror 
plane



  

Symmetry Notation

● Spectroscopists use Schoenflies notation to describe 
symmetry (e.g. C

2v
, D

4h
)

● Crystallographers use Hermann-Mauguin notation 
(International notation)

● Was introduced by Carl Hermann in 1928, modified by 
Charles-Victor Mauguin in 1931

● Adopted for the 1935 edition of the International Tables for 
Crystallography



  

Features of Hermann-Mauguin 
Notation

● Hermann-Mauguin notation is preferred for crystallography

– Easier to add translational symmetry elements

– Directions of symmetry axes are specified
● Quick things to note:

– Interpretation of Hermann-Mauguin symbols depends 
on the crystal system

– “n/m” notation means mirror plane perpendicular to n-
fold axis

– Hermann-Mauguin symbols have both “long” and 
“short” forms

– Not all symmetry elements present are symbolized, 
some are left implicit



  

Brief Detour: Specifying Directions in a 
Crystal

● Miller Indices, h, k, l

● Specify a plane in a crystal by indexing the reciprocals of where 
the plane intersects the axes

● Example:  a plane has axial intercepts at (-¼, ½, ) the Miller ⅓
index is (423)

● Planes, vectors, reciprocal lattice points, and forms may be 
specified using Miller indices

– Plane: (hkl)

– Vector: [hkl]

– Reciprocal lattice point: hkl

– Forms {hkl}
● In this lecture we will be using (hkl) and [hkl] often 



  

Understanding Hermann-Mauguin 
Notation for Point Groups

Crystal 
System

1st Position 2nd Position 3rd Position Point Groups

Triclinic Only one position, denoting all directions in crystal 1, 1

Monoclinic Only 1 symbol: 2 or 2 ║to Y (b is principal axis) 2/m, 2, m

Orthorhombic 2 and/or 2 ║ to 
X

2 and/or 2 ║ to 
Y

2 and/or 2 ║ to 
Z

mmm, mm2, 222

Tetragonal 4 and/or 4 ║ to 
Z

2 and/or 2 ║ to 
X and Y

2 and/or 2 ║ to 
[110]

4/mmm, 42m, 
4mm, 422, 4/m, 4, 
4

Trigonal 3 and/or 3 ║ to 
Z

2 and/or 2 ║ to 
X, Y, U

3m, 3m, 32, 3, 3

Hexagonal 6 and/or 6 ║ to 
Z

2 and/or 2 ║ to 
X, Y, U

2 and/or 2 
along [110]

6/mmm, 6m2, 
6mm, 622, 6/m, 6, 
6

Cubic 2 and/or 2 ║ to 
X, Y, Z

3 and/or 3 ║ to 
[111]

m3, 23

4 and/or 4 ║ to 
X, Y, Z

2 and/or 2 
along face 
diagonals

m3m, 43m, 432



  

Choosing the Correct Crystal System

● Do not assume the metric relations indicate 
the correct point group and crystal system!!!

● Correctly identify the Laue group symmetry of 
the diffraction pattern (equivalent intensities, 
R

sym
)

● The Laue symmetry indicates the crystal 
system of your sample

● Correct Laue group assignment narrows 
space group choices



  

Space Groups

● Space groups vs Point groups

– Point groups describe symmetry of isolated 
objects

– Space groups describe symmetry of infinitely 
repeating space filling objects

● Space groups include point symmetry elements 
● Space groups include additional translational 

symmetry elements
● The presence of translational symmetry elements 

causes systematic absences in the diffraction 
pattern



  

Translational Symmetry Elements

● Lattice Translations
– Trivial unit cell translations
– Translations due to centring vectors from non-

primitive Bravais lattices
● Screw Axes – combine a rotation with 

translation
● Glide Planes – combine a reflection with 

translation



  

Screw Axes

● Combines rotation and translation

● Designated as n
m
 (e.g. 2

1
, 4

1
, 3

2
, 

4
3
)

● Rotation as 360º/n

● Symmetry element of the first kind

● Translation as m/n of a unit cell (n 
> m)

● Orientation of the screw axis given 
by its place in the H-M symbol

● Causes systematic absences in 
axial (h00,0k0,00l) reflections

● Certain pairs of screw axes 
correspond to right and left handed 
screws (e.g. 3

1
 and 3

2
) and are 

enantiomorphs



  

Glide Planes

● Combine reflection with 
translation

● Symmetry element of the 
second kind

● Designated as a, b, c, d, n 
and letter gives direction of 
translational component

● Orientation of reflection 
plane given by place in the 
H-M symbol

● Cause systematic absences 
in zero layers (0kl, h0l, and 
hk0) of the diffraction pattern



  

n and d Glide Planes

● n glides translate along face diagonals, 
(a+b)/2, (a+c)/2, or (b+c)/2

● d glides only occur F and I centred lattices
● d glides translate along face diagonals at ¼ 

along each direction, i.e. (a+b)/4, (a+c)/4, or 
(b+c)/4

● After 2 (or 4 for d glides) consecutive glide 
operations the point is identical to the original 
point plus a unit translations along 2 axes



  

Interpretation of Space Group 
Symbols

● Space group symbols 
consist of several parts

– Bravais lattice 
type

– List of symbols 
denoting type and 
orientation of 
symmetry 
elements

● Must know the Crystal 
System in order to 
correctly interpret the 
space group symbol 



  

Interpretation of Space Group 
Symbols

● Perform the following steps:

– Identify the point group of the crystal
● Remove Bravais lattice type symbol
● Iba2 →”ba2”
● Convert all translational symmetry elements 

to their point counterparts (glides →mirror; 
screw axes → rotation axes)

● “ba2” → mm2
– Look up crystal system which corresponds to that 

point group (mm2 → orthorhombic)
–  Use Hermann-Mauguin rules for that crystal 

system 



  

Interpretation of Iba2 Space Group 
Symbol

● Continue with Iba2 example
● Body centred
● b glide reflecting across (100)
● a glide reflecting across (010)
● 2-fold proper rotation parallel to [001]
● mm2 is an acentric point group. Therefore, 

Iba2 is an acentric space group



  

Notable Features of Space Groups

● Combining point symmetry and translational symmetry 
elements with the 14 Bravais lattices yields 230 unique 
space groups

● 73 of these are symmorphic space groups.  These have 
no translational symmetry elements (e.g. P222, F23, 
Immm)

● 11 enantiomorphous pairs.  If a (+) chiral molecule 
crystallizes in one of these space groups, the (-) 
enantiomer will crystallize in the other of the pair. E.g. 
P6

1
22 and P6

5
22

● Enantiopure compounds will crystallize in space groups 
which only  contain symmetry elements of the first kind.  
There are 65  of these space groups



  

Representations of Symmetry

● Graphical Representation

– Qualitative and Symbolic

– Non-mathematical

– Visually intuitive (for the most part)

● Equivalent positions (x,y,z)

– Simple algebraic expressions

– Good for humans

● Matrix Representation

– Easy to transform

– Numerically oriented

– Good for computers

● ORTEP Representation

– Compact notation of symmetry operation and unit cell translations

– Related representations found in PLATON, XP, and CIF



  

Graphical Representation of Symmetry 
Elements

● Proper rotations 
depicted as symbols 
with the number of 
vertices which 
corresponds to n

● Screw axes have same 
symbol, but have “tails”

● Enantiomeric pairs of 
screw axes (e.g. 6

1
 and 

6
5
) are mirror images of 

each other



  

Equivalent Position Representation

● Simple algebraic 
expressions

● Good for humans

● P2
1
/c example

(1) x, y, z

(2) x, y + ½, z + ½  

(3) x, y, z

(4) x, y + ½, z + ½  



  

Matrix Representation of Symmetry

● Symmetry operator can be partitioned into a rotational part and a  
translational part

● Rotations can be described as simple 3x3 matrices. Matrix elements are 
either 1, 0, or -1

● Translations described as 3x1 matrix

● v' = Rv + t where v = [x,y,z]

● For example, in P2
1
/c the equivalent position: x, y+ ½, z + ½  looks like 

this in matrix representation:  



  

ORTEP Symmetry Representation

● Early days of computing 
memory was expensive

● Needed compact way to depict 
symmetry equivalent atomic 
positions including translations

● Avoid negative numbers in unit 
cell translations

● “5” is the new “0”

● Example: 347502

● Depends on lists of atoms and 
symmetry operators elsewhere 
in the file or the program



  

PLATON, XP, and CIF Symmetry 
Codes

● Derived and modified from original ORTEP scheme, 
maintains compactness

● PLATON: [sym_op][T
x
T

y
T

z
].[residue]

– e.g. 2565.01

● XP: [sym_op][T
x
T

y
T

z
]

– e.g. 2565

● CIF: [sym_op]_[T
x
T

y
T

z
]

– e.g. 2_565
● All depend on a list of symmetry operators being 

defined somewhere else in the file or the software



  

International Tables for 
Crystallography

● Information on crystallographic symmetry and 
related topics has been codified and 
published in the International Tables for 
Crystallography

● Originally published in 1935, the work has 
been revised and expanded to include all 
sorts of topics relevant to X-ray 
Crystallography

● We will only concern ourselves with material 
related to space groups (Volume A)



  

Using the International Tables for X-
ray Crystallography

● The International Tables (IT) contain 
information on all space groups

● Most common information used by 
crystallographers:

– Graphical depictions
– Equivalent positions
– Special positions and site symmetries
– Systematic absence conditions  



  

Example of International Tables Entry 
(P2

1
/c)



  

Experimental Determination of Space 
Group

● Space groups are determined primarily 
through the examination of systematic 
absences

● Some space groups are uniquely determined 
by the systematic absences, others are not

● For ambiguous cases, very often the choice 
is between a centric and acentric space 
group, e.g. Pca2

1
 and Pbcm



  

Systematic Absences due to Non-
Primitive Lattices

● Non-primitive lattices exhibit systematic 
absences in the general hkl class of reflection

Centring Absence Condition for hkl reflections

A k+l = odd

B h+l = odd

C h+k = odd

F k+l = odd,   
h+l = odd,
h+k = odd

I h+k+l = odd



  

Screw Axis Absences

● Screw axes affect the classes of axial 
reflections: h00, 0k0, and 00l

● The type of screw axis is determined by 
examining the pattern of the absence

● Example: consider 6 fold screws along c axis:

– 6
1
 or 6

5
, 00l: l = 6n + 1, 2, 3, 4, 5 (not divisible 

by 6)

– 6
2
 or 6

4
, 00l: l = 3n+1, 2 (not divisible by 3)

– 6
3
, 00l: l = 2n+1 (not divisible by 2) 



  

Orientation of Glide Planes

● When a glide plane is present one can 
determine the orientation and type of glide 
plane from the affected class(es) of 
reflections

● The 0 index of the affected layer indicates the 
orientation of the glide's reflection plane

– 0kl:  glide reflects across (100)
– h0l: glide reflects across (010)
– hk0:  glide reflects across (001)



  

Identification of Glide Planes

● The translational component identifies the type of glide plane

● The translational component causes absences along the 
affected axes

● 0kl:

– k = odd → b glide;  l = odd →  c glide; k+l = odd →n 
glide

● h0l:

– h = odd → a glide; l = odd → c glide; h+l = odd → n 
glide

● hk0:

– h = odd → a glide; k = odd → b glide; h+k = odd → n 
glide



  

Conventional Settings

● Space group symbols depend on choice of axes

● Minimize ambiguity by following established conventions 
(unless there is a reason to break from convention)

● International Tables gives conventional settings

– Lots of different rules

– Learn through experience
● Some examples (conventional setting bold):

– P2
1
/a is the same P2

1
/c 

– Pcab is the same as Pbca 

– Pc2
1
b is the same as Pca2

1
 



  

Space Group Ambiguities

● Sometimes space group extinctions do not 
uniquely identify the space group

● In these cases, use some rules of thumb
– Centric groups are more common than 

acentric groups.  Therefore, try solving with 
the centric group first

– Alternative approach: start with acentric group 
and look for missing symmetry after structure 
solution



  

Problems with Systematic Absences

● Sometimes systematic absences which should be there are 
violated for a couple of reasons

– Twinning:  
● reflections from an alien lattice occur where 

absences from primary lattice should be
● Twinning can cause a mis-indexing of lattice 

and upset the systematic absence patterns
– Renninger effect (“double diffraction”) can cause 

apparent violations of systematic absence conditions
● Systematically weaker reflections due to pseudotranslational 

effects are missed and counted as absences when they 
should not be. E.g. mistaking a primitive cell to be a centred 
cell



  

Subtleties in Space Group 
Determination

● Space groups P3m1, P31m, P3m1, and P31m are 
symmorphic space groups (no translational symmetry 
elements)

● Can we differentiate them in some way to identify the 
space group?

● P3m1, P31m are distinguishable on the basis of their 
Laue symmetry equivalent intensities

● We cannot distinguish P3m1 from P3m1 nor P31m from 
P31m (centric/acentric pairs of space groups) 

● Similarly we can differentiate P6/m from P6/mmm on 
the basis of Laue intensity distributions



  

Conclusion

● Understanding symmetry in general and 
space groups in particular is essential to 
successful structure determination

● Incorrect assignment of crystal system and 
space group constitute serious errors in 
crystal structure analysis

● Thoughtfulness and experience are essential 
to becoming proficient in space group 
assignment
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