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• The American Crystallographic Association (ACA) advances, promotes and 
preserves crystallography, structural science, and allied disciplines for the 
benefit of humankind. The ACA provides students, young scientists and 
experienced crystallographers with opportunities to exhibit their 
achievements in research, creative and scholarly activities, and leadership. 
The ACA contributes to the intellectual, economic and scientific advancement 
of the communities and individuals it serves though conferences, publications 
and public outreach.
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US to the International Union of Crystallography (IUCr).There is a Canadian 
division of the ACA and a Canadian representative (voting) on the ACA 
Council. 
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The Most Important Thing to 
Remember

http://en.wikipedia.org/wiki/Euler's_formula
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• Originally proposed by Jean-Bapiste Joseph 
Fourier in 1822 in The Analytical Theory of Heat

• Described discrete function as the infinite sum of 
sines

Fourier Theory



The Fourier Transform



The Fourier Transform





The Dirac δ function
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Fourier transforms and δ functions





Waves and Electromagnetic Radiation

• What is a wave?
– Direction of propagation
– Amplitude

• Wave crest
• Wave trough

– Wavelength
• Period
• Frequency
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Waves and Electromagnetic Radiation

• What is a wave?
– Direction of propagation
– Amplitude

• Wave crest
• Wave trough

– Wavelength
• Period
• Frequency
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Intensity (Amplitude) of the Wave



Diffraction

• Diffraction by one dimensional objects
• Diffraction by two dimensional objects
• Diffraction by three dimensional objects



Diffraction by a one dimensional 
object



Diffraction by one narrow slit
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Diffraction by one wide slit
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Diffraction by two narrow slits
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Diffraction by Two Wide Slits



Diffraction by Two Wide Slits



Diffraction by N Narrow Slits 
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• The position of the main peaks in a 
diffraction pattern is determined solely by 
the lattice spacing of the object

• The shape of each main peak is 
determined by the overall shape of the 
object.

• The effect of the object (motif) is to alter 
the intensity of each main peak, but the 
positions of the main peaks remain 
unchanged. 





• The positions of the main peaks give 
information about the lattice

• The shape of each main peak gives 
information on the overall object shape.

• The set of intensities of the main peaks 
gives information on the structure of the 
motif. 



Diffraction by a 3D Lattice
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The Reciprocal Lattice





Diffraction by a 3D Object



Diffraction by the Motif

• In this section we will:
– Learn scattering (diffraction) by a single 

electron
– Learn scattering by a group of electrons
– Define the electron density function
– Define the structure factor
– Define the atomic scattering factor
– Define Friedel’s Law and when it fails
– What the effect of translational symmetry has 

on the diffraction pattern
– Look at a real example of scattering by a motif



Thomson Scattering by a Single 
Electron
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Thomson Scattering by a Group of 
Electrons (I)



Thomson Scattering by a Group of 
Electrons (II)



Thomson Scattering by a Group of 
Electrons (III) or the Motif



Thomson Scattering by a Group of 
Electrons (IV) or the Motif
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The Electron Density Function
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The Structure Factor (I)



The Structure Factor (II)



The Structure Factor (III)

• In the first equation the coordinates (x, y, z) refer to any position within the 
unit cell, whereas (xj, yj, zj) in the second equation define the position of the 
atoms. 

• ρ(x, y, z) is a continuous function describing the overall electron density, fj, is 
a property of each atom.

• The first equation requires an integration over the entire unit cell, but the 
second equation requires a summation over the positions of the atoms 
within the unit cell. 



Scattering from
lattice planes

Atomic structure factors  
add as complex numbers, 
or vectors.

• The amplitude of scattering depends on the number of electrons in each 
atom.
• The phase depends on the fractional distance it lies from the lattice plane.
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The Atomic Scattering Factor



Correction for Thermal Motion (I)



Correction for Thermal Motion (II)
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Dispersion
• Scattering is the result of an interaction of electromagnetic radiation 

with an electron. 
– Rayleigh or elastic scattering
– Compton or inelastic scattering

• Dispersion occurs when electromagnetic radiation interacting with a 
an electron in a shell has nearly the same frequency as the oscillator, 
ie resonates
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Effect on Diffraction Data

• Form factor

• Structure Factor
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Breakdown of Freidel’s Law



Absorption

• Absorption is another resonance effect 
and is related to dispersion by the 
equation
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Systematic Absences (I)



Systematic Absences (II)
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http://wwwba.ic.cnr.it/sites/default/files/abc/abc/symmetry/restr2.htm



Small Angle Scattering is an 
Example of Scattering by a Motif (II)
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Textbooks and Resources Used
Jim Pflugrath and Lee Daniels, Rigaku Americas Corp. 
Crystals, X-rays and Proteins: Comprehensive Protein Crystallography, 
by D. Sherwood and J. Cooper, Oxford University Press, © 2011
Fundamentals of Crystallography, 2nd Ed., C. Giacovazzo ed. Oxford 
University Press, © 2002
Understanding Single Crystal X-ray Crystallography, D. Bennett, Wiley-
VCH, © 2010
International Tables for Crystallography, Volume A, Space Group 
Symmetry, T. Hahn, Springer, 2002
Dauter and Jaskolski, J. Appl. Cryst.(2010), 43, 1150-1171
http://escher.epfl.ch/software/
http://www.ysbl.york.ac.uk/~cowtan/sfapplet/sfintro.html
http://wwwba.ic.cnr.it/abc
http://see.stanford.edu/see/lecturelist.aspx?coll=84d174c2-d74f-493d-
92ae-c3f45c0ee091
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