



# What is a Crystal?



 a body that is formed by the solidification of a chemical element, a compound, or a mixture and has a regularly repeating internal arrangement of its atoms and often external plane faces—*Merriam Webster*

### Crystal Structure of Methanol





M.T.Kirchner, D.Das, R.Boese, (2008) Cryst.Growth Des. 8, 763

May 19, 2020

# Miller indices





image: Felix Kling

- Notation introduced by William Hallowes Miller in 1839
- Miller indices indicate family of lattice planes. In typical crystals, these are integers, *h*,*k*,*l*. For quasicrystals, these indices may be irrational. The indices correspond to the directions of reciprocal lattice of the crystal. A value of 0 for any index indicates that the lattice plane does not intersect that vector.
- Example 1: (100) is a plane parallel to the b and c lattice vectors, intersecting the a-axis at one unit length.
- Example 2: (020) is a plane that runs parallel to a and c, intersecting the b-axs at <sup>1</sup>/<sub>2</sub> unit length.

# X-ray Diffraction







CCCW20

# Diffraction of X-rays by Crystals



- Von Laue discovers diffraction of X-rays by crystals in 1912
- Awarded Nobel Prize in Physics in 1914



Max Theodor Felix von Laue (1879 – 1960)



Fig. 4-4(2). Friedrich & Knipping's improved set-up.

https://www.sas.upenn.edu/~mhayden/mcep/chem507/project/history/ history.html



# Laue Equations





- Laue equations
  - $\mathbf{a} \cdot \Delta \mathbf{k} = 2\pi h$
  - $\mathbf{b} \cdot \Delta \mathbf{k} = 2\pi k$
  - $\mathbf{c} \cdot \Delta \mathbf{k} = 2\pi l$
- a,b,c are primitive vectors of crystal lattice
- $\Delta \mathbf{k} = \mathbf{k}_{in} \mathbf{k}_{out}$
- $\Delta k = scattering vector$
- For diffraction, (h,k,l) must be integers

# Diffraction of X-rays by Crystals



After Von Laue's pioneering research, the field developed rapidly, most notably by physicists William Lawrence Bragg and his father William Henry Bragg.



#### William Henry Bragg

In 1912-1913, the younger Bragg developed Bragg's law, which connects the observed scattering with reflections from evenly-spaced planes within the crystal.



#### William Lawrence Bragg





- X-rays scattering coherently from 2 of the parallel planes separated by a distance d.
- Incident angle and reflected (diffracted angle) are given by θ.





- The condition for constructive interference is that the path difference leads to an integer number of wavelengths.
- Bragg condition → concerted constructive interference from periodically-arranged scatterers.
- This occurs ONLY for a very specific geometric condition.



$$\frac{\lambda}{2} = d \cdot \sin \theta \longrightarrow n\lambda = 2d \sin \theta$$





We can think of diffraction as reflection at sets of planes running through the crystal. Only at certain angles  $2\theta$  are the waves diffracted from different planes a whole number of wavelengths apart (i.e., in phase). At other angles, the waves reflected from different planes are out of phase and cancel one another out.

# Diffraction Geometry in 2D







May 19, 2020

## Detection area in 3D, square detector





The detection area of a detector is the projection of the (square) detector onto the surface of the Ewald sphere

# Detection area in 3D, square detector





- The size of the detection area depends on the detector's size and its distance from the sample
- The position of detection area depends on the 2θ swing angle of the detector

### Cusp area





- One single scan will miss the cusp and will not be sufficient to collect true multiplicity
- Changing the crystal's orientation using one axis and scanning using another axis will allow the acquisition of missing data and
- Provide redundant data

# Diffraction Geometry in 3D phi and omega scans





#### Omega scans





- omega scans are geometrically very flexible
- A combination of omega scans can cover reciprocal space very effectively

#### Omega scans





- omega scans are geometrically very flexible
- A combination of omega scans can cover reciprocal space very effectively



# Phi Scan





- Phi scans are always oriented along the phi spindle axis
- They are most efficient if they are perpendicular to the beam

May 19, 2020



# Phi Scan





- Phi scans are always oriented along the phi spindle axis
- They are most efficient if they are perpendicular to the beam



# Resolution





- Higher resolution provides better determination of atomic positions and more accurate values for derived geometry
- Resolution is limited by wavelength of radiation and by instrument geometry
- Maximum resolution is given by Bragg's Law. Solve for d:

$$d = \frac{\lambda}{2\sin(\theta)}$$

- Highest resolution will be at  $sin(\theta)=1$ , so  $d = \frac{\lambda}{2}$
- For Cu Ka (1.54178 Å) d<sub>max</sub> = 0.77 Å;
- For Mo Ka (0.71073 Å) d<sub>max</sub> = 0.36 Å

# Impact of Resolution on Structure Determination







| resolution/Å | data  | parameters | ratio | <b>R1</b> | peak/e∙ų | hole/e∙ų |
|--------------|-------|------------|-------|-----------|----------|----------|
| 0.36         | 32178 | 216        | 149.0 | 0.0246    | 0.62     | -0.65    |
| 0.60         | 7373  | 216        | 34.1  | 0.0223    | 0.58     | -0.25    |
| 0.75         | 3773  | 216        | 17.5  | 0.0245    | 0.42     | -0.30    |
| 0.80         | 3047  | 216        | 14.1  | 0.0241    | 0.33     | -0.30    |
| 0.83         | 2787  | 216        | 12.9  | 0.0236    | 0.28     | -0.31    |
| 0.95         | 1859  | 216        | 8.6   | 0.0223    | 0.18     | -0.29    |
| 1.00         | 1594  | 216        | 7.4   | 0.0219    | 0.17     | -0.30    |
| 1.50         | 474   | 101        | 4.7   | 0.0304    | 0.13     | -0.22    |

# Structure refinement to 0.36 Å





- 32178 unique data
- 149:1 data to parameter ratio
- 216 parameters
- Anisotropic refinement of thermal displacement parameters

# Structure refinement to 0.75 Å





- 3773 unique data
- 17.5:1 data to parameter ratio
- 216 parameters
- Anisotropic refinement of thermal displacement parameters



# Structure refinement to 0.80 and 0.83 Å



- 3047 unique data
- 216 parameters
- 14.1:1 data to parameter ratio



- 2787 unique data
- 216 parameters
- 12.9:1 data to parameter ratio

# Structure refinement to 0.75 Å





- 1594 unique data
- 7.4:1 data to parameter ratio
- 216 parameters
- Anisotropic refinement of thermal displacement parameters

# Structure refinement to 1.5 Å





- 474 unique data
- 4.7:1 data to parameter ratio
- 101 parameters with isotropic refinement of thermal parameters
- U<sub>iso</sub> cannot be modeled for one C atom

# Gallery of Aceclofenac at different resolutions





May 19, 2020

CCCW20

## Conclusions



- Bragg's Law relates diffraction to reflection from crystallographic planes
- The Ewald construction helps to visualize the diffraction sphere and consider data collection strategy
- Acquiring data to higher resolution leads to more accurate determination of the atomic positions and more reliable derived geometric parameters







# Suggested Reading



#### Crystal Structure Analysis: A Primer

- J. P. Glusker and K. N. Trueblood
- Oxford ; New York : Oxford University Press, 2010.

#### Crystal structure determination

- W. Massa
- Berlin Springer, 2016.

#### Fundamentals of crystallography

- C. Giacovazzo, et al
- Oxford ; New York : Oxford University Press, 2009.



Innovation with Integrity

2020CopQCGMt2Bruker Corporation. All rights reserved.