2020 Canadian Chemical Crystallography Workshop

2020 Canadian Chemical Crystallography Workshop

Pandemic Edition!!

L12. Crystallographic Information Framework and Validation: The CIF file and checkCIF

Volume 101, Number 3, May–June 1996 Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol. 101, 341 (1996)]

CIF (Crystallographic Information File): A Standard for Crystallographic Data Interchange

Volume 101	Number 3	May–June 1990		
I. D. Brown	The Crystallographic Information File (CIF) uses the self-defining STAR file structure.	become computer interpretable. This offers many possibilities for the automatic han-		
Brockhouse Institute for Materials	This requires the creation of a dictionary of data names and definitions. A basic dic-	dling of crystallographic information.		
Research, McMaster University, Hamilton, Ontario, Canada	tionary of terms needed to describe the crystal structures of small molecules was approved in 1991 and is currently used for	Key words: crystallographic information; file structures: relational databases: STAR		

1. Need for a Crystallographic Information File

Crystallography is rich in numerical information. An x-ray or neutron diffraction pattern of a crystal typically consists of several thousand diffraction peaks, the intensities of which are used to determine the several hundred parameters needed to describe the positions and motions of the atoms. These coordinates are not themselves interesting, but they can be used to calculate the bonding geometry or to display the arrangement of the atoms on a screen. It is therefore convenient to keep the information in an electronically readable form and for this purpose we need a file structure. If the file structure is widely accepted by the community, the information describing the crystal can be readily passed from program to program or from laboratory to laboratory.

Traditionally the results of a scientific investigation are printed in a journal. A crystal structure determination requires that all the atomic coordinates be printed (and, in principle, also the diffraction amplitudes, since they are the primary measurements). The process by which the journal manually typesets extensive tables from a computer listing, and the reader of the journal subsequently keyboards the same numbers back into the computer, is very inefficient and error prone. Recognising this, the International Union of Crystallography (IUCr) decided in 1990 to accept structure reports for *Acta Crystallographica C* in an electronic form generated by the software used for the structure determination. The numerical values in this submission were to be computer checked for consistency and the paper typeset by computer, before the electronic file was passed on to the crystallographic databases for archiving. To facilitate this process the IUCr established the Crystallographic Information File (CIF) as a standard for the transmission of crystallographic data.

Because crystallography, and particularly information technology, are rapidly evolving, it is necessary that the CIF standard also be able to grow. It has to be flexible, allowing for extension as the need arises and, as far as

L12. Crystallographic Information Framework and Validation: The CIF file and checkCIF

Volume 101, Number 3, May–June 1996 Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol. 101, 341 (1996)]

CIF (Crystallographic Information File): A Standard for Crystallographic Data Interchange

Volume 101	Number 3	May–June 1996		
I. D. Brown	The Crystallographic Information File (CIF) uses the self-defining STAR file structure.	become computer interpretable. This offers many possibilities for the automatic han-		
Brockhouse Institute for Materials	This requires the creation of a dictionary of data names and definitions. A basic dic-	dling of crystallographic information.		
Research, McMaster University, Hamilton, Ontario, Canada	tionary of terms needed to describe the crystal structures of small molecules was approved in 1991 and is currently used for	Key words: crystallographic information; file structures: relational databases: STAR		

1. Need for a Crystallographic Information File

Crystallography is rich in numerical information. An x-ray or neutron diffraction pattern of a crystal typically consists of several thousand diffraction peaks, the intensities of which are used to determine the several hundred parameters needed to describe the positions and motions of the atoms. These coordinates are not themselves interesting, but they can be used to calculate the bonding geometry or to display the arrangement of the atoms on a screen. It is therefore convenient to keep the information in an electronically readable form and for this purpose we need a file structure. If the file structure is widely accepted by the community, the information describing the crystal can be readily passed from program to program or from laboratory to laboratory.

Traditionally the results of a scientific investigation are printed in a journal. A crystal structure determination requires that all the atomic coordinates be printed (and, in principle, also the diffraction amplitudes, since they are the primary measurements). The process by which the journal manually typesets extensive tables from a computer listing, and the reader of the journal subsequently keyboards the same numbers back into the computer, is very inefficient and error prone. Recognising this, the International Union of Crystallography (IUCr) decided in 1990 to accept structure reports for *Acta Crystallographica C* in an electronic form generated by the software used for the structure determination. The numerical values in this submission were to be computer checked for consistency and the paper typeset by computer, before the electronic file was passed on to the crystallographic databases for archiving. To facilitate this process the IUCr established the Crystallographic Information File (CIF) as a standard for the transmission of crystallographic data.

Because crystallography, and particularly information technology, are rapidly evolving, it is necessary that the CIF standard also be able to grow. It has to be flexible, allowing for extension as the need arises and, as far as

L12. Crystallographic Information Framework and Validation: The CIF file and checkCIF

First introduced in 1990's as a means of archiving and distributing structural information, as well as a means of formatting and publishing the same structural information (see Acta Crystallographica papers).

Crystal structures are essentially a collection of 3D atomic coordinates (and their ADPs) that define the asymmetric unit, combined with symmetry elements associated with a space group that we use to build the lattice. They are ideally suited to electronic handling and archiving.

Crystal structures are essentially a collection of 3D atomic coordinates that define the asymmetric unit, combined with symmetry elements associated with a space group that we use to build the lattice. They are ideally suited to electronic handling and archiving.

"The crystallographic community needed a common file structure that all crystallographic applications would recognize...the file structure had to be more than just a storage place for archiving the results of crystallographic determinations, it had to be a **crystallographic language** that could be used by computers to explore the wealth of information on crystal chemistry that was even then accumulating in electronic databases." Brown and McMahon, *Acta Cryst.* (2002), **58**, 317-324

What is a CIF?

What is a CIF?

A CIF is simply a text file!

Feel free to edit...

What is a CIF?

The CIF contains the most current information about your crystal (coordinates, ADPs) and the associated refinement data (R-values, residual electron density). It should also contain a complete a copy of the .res file and a list of structure factors. Most refinement packages (Olex2, etc) can generate new .ins and .hkl files directly from the CIF.

The CIF contains fields to be filled in with information about the crystal, its structure, and the refinement results. ShelXL (Crystals? Olex2.refine?) will fill in as many fields related to the refinement as possible, Olex2 (Shelxle? Crystals?) will fill in fields related to the crystal, the X-ray source, diffractometer, etc.

CIFs are generated at the completion of a refinement cycle when the command 'ACTA' is included in your .ins instruction file. In Olex2, if the ACTA tab is selected <u>a new CIF will overwrite the previous CIF after each cycle</u>.

hi005.cif - Notepad Х File Edit Format View Help 'monoclinic' _space_group_crystal_system space group IT number 14 Information about the space group. space group name H-M alt 'P 1 21/n 1' '-P 2yn' _space_group_name_Hall loop _space_group_symop_operation_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' This (in addition to cell length a 10.7046(8)fractional coordinates) cell length b 15.0609(11)is all that's required to cell_length_c 12.5922(10) cell angle alpha 90 'build' the crystal. _cell_angle beta 99.232(2) _cell_angle gamma 90 cell volume 2003.8(3) cell formula units Z 4 cell measurement reflns used ? cell measurement temperature 90(2) cell measurement theta max _cell_measurement_theta min A AA4

🧾 hi005.cif - Notepad		- 🗆 X	
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp			
_exptl_crystal_colour	?		
_exptl_crystal_density_diffrn	1.370		
_exptl_crystal_density_meas	?		
_exptl_crystal_density_method	?		
_exptl_crystal_description	?		
_exptl_crystal_F_000	864		
_exptl_crystal_size_max	0.2	Crystal stuff!	
_exptl_crystal_size_mid	0.13		
_exptl_crystal_size_min	0.09		
_exptl_transmission_factor_max	?		
_exptl_transmission_factor_min	?		
_diffrn_reflns_av_R_equivalents	0.0413		
_diffrn_reflns_av_unetI/netI	0.0396		
_diffrn_reflns_Laue_measured_frac	tion_full 1.000		
_diffrn_reflns_Laue_measured_frac	tion_max 0.999		
_diffrn_reflns_limit_h_max	15		
_diffrn_reflns_limit_h_min	-15		
_diffrn_reflns_limit_k_max	18	Data stuff!	
_diffrn_reflns_limit_k_min	-21		
_diffrn_reflns_limit_l_max	17		
_diffrn_reflns_limit_l_min	-17		
_diffrn_reflns_number	25355		
_diffrn_reflns_point_group_measur	ed_fraction_full 1.000		
_diffrn_reflns_point_group_measur	ed_fraction_max 0.999		
_diffrn_reflns_theta_full	25.242		
_diffrn_reflns_theta_max	30.104		
diffrn reflns theta min	2.124		

hi005.cif - Notepad \times File Edit Format View Help systematic absences. reflns threshold expression 'I > 2 (I)'computing cell refinement computing data collection _computing_data_reduction _computing_molecular graphics 'Olex2 1.3 (Dolomanov et al., 2009)' computing publication material 'Olex2 1.3 (Dolomanov et al., 2009)' _computing_structure_refinement 'XL (Sheldrick, 2008)' computing structure solution 'SHELXT 2014/5 (Sheldrick, 2014)' refine diff density max 0.389 refine diff density min -0.271 refine diff density rms 0.055 refine ls extinction coef _refine_ls_extinction_method none refine ls goodness of fit ref 1.009 refine ls hydrogen treatment constr full refine ls matrix type refine ls number parameters 282 refine ls number reflns 5889 refine ls number restraints 0 **Refinement results!** refine ls R factor all 0.0755 refine ls R factor gt 0.0471 _refine_ls_restrained_S_all 1.009 refine ls shift/su max 0.000 refine ls shift/su mean 0.000 refine ls structure factor coef Fsqd refine ls weighting details 'w=1/[\s^2^(Fo^2^)+(0.0537P)^2^+0.8469P] where P=(Fc^2^+2Fc^2^)/3' _refine_ls_weighting_scheme calc refine ls wR factor gt 0.1066 refine ls wR factor ref 0.1202

What information is found in a CIF?

ard		С	rganize		New Open		Select
« Ihm	> hi00 >	~	Ö	,	ch hi005 - CCCW20		
^	Name				Date modified	∨ Туре	Size
	olex2				2020-05-13 2:16 PM	File folder	
	🤍 mo_hi00)5_01ls			2017-02-23 9:23 AM	_LS File	465 KB
	🤍 mo_hi00)5_0mls			2017-02-23 9:23 AM	_LS File	72 KB
1	🔼 mo_hi00)5_0m.p4p			2017-02-23 9:23 AM	P4P File	2 KB
1	🤍 mo_hi00)5.abs			2017-02-23 9:24 AM	ABS File	6 KB
1	🤍 hi005.pc	f			2017-02-23 9:25 AM	PCF File	2 KB
- 11	4 hi005.hk	:l			2017-02-23 9:26 AM	HKL File	760 KB
	🤍 hi005 - 1	1.cif			2020-05-12 2:22 PM	CIF File	784 KB
20	hi005.2f	cf			2020-05-12 4:32 PM	2FCF File	329 KB
:	hi005.ins	5			2020-05-12 4:32 PM	INS File	8 KB
	🛄 hi005.m	at			2020-05-12 4:45 PM	Microsoft Access T	335 KB
	hi005.re	s			2020-05-12 4:45 PM	RES File	8 KB
	Alion Ali	F			2020-05-12 4:45 PM	CIF File	786 KB
	A hi005.fc	f			2020-05-12 4:45 PM	FCF File	329 KB
	Alion Aliant	:			2020-05-12 4:45 PM	LST File	77 KB

 \sim

Without files

What information is found in a CIF?

With files

hi005 - Copy.cif - Notepad		*hi005.cif - Notepad		- 🗆 ×	—
File Edit Format View Help		File Edit Format View Help			
exptl_crystal_colour	5	exptl crystal colour primarv	orange	^	
exptl_crystal_density_diffrn	1.370	exptl crystal density diffrn	1.370		
exptl_crystal_density_meas	?	exptl crystal density meas	?		
exptl_crystal_density_method	?	exptl crystal density method	?		
_exptl_crystal_description	?	expt1 crystal description	'nrism'		
_exptl_crystal_F_000	864	expt1_crystal_cost iption	864		
_exptl_crystal_size_max	0.2		0.2		
exptl_crystal_size_mid	0.13	_expti_crystal_size_max	0.12		
exptl crystal size min	0.09	_expti_crystal_size_min	0.15		
exptl transmission factor max	?	_expti_crystal_size_min	2		
exptl transmission factor min	?	_expt1_transmission_factor_max	1 2		
diffrn reflns av R equivalents	0.0413	_expti_transmission_ractor_min	: 0.0412		
diffrn reflns av unetI/netI	0.0396	_uirtrn_retins_av_k_equivalents	0.0206		
diffrn reflns Laue measured fract	tion full 1.000	_uirtrn_retins_av_uneti/neti	0.0390		
diffrn reflns Laue measured fract	tion max 0.999	_uittrn_retins_Laue_measured_trac	LION_TUIL 1.000		
diffrn reflns limit h max	15	retins_Laue_measured_frac	tion_max 0.999		
diffrn reflns limit h min	-15		15		
diffrn reflns limit k max	18	_diffrn_refins_limit_n_min	-15		
diffrn reflns limit k min	-21	_diffrn_reflns_limit_k_max	18		
diffrn reflns limit 1 max	17	_diffrn_reflns_limit_k_min	-21		
diffrn reflns limit 1 min	-17	_diffrn_refins_limit_l_max	17		
diffrn reflns number	25355	_diffrn_reflns_limit_l_min	-17		
diffrn reflns noint group measure	ed fraction full 1 000	_diffrn_reflns_number	25355		
diffrn reflns point group measure	ed fraction max 0 999	_diffrn_reflns_point_group_measur	ed_fraction_full 1.000	Olav2 will nonula	hlaif ata
diffrn reflns theta full	25 242		ed_fraction_max 0.999		ale neiu
differ nofles that may	20.104	_diffrn_reflns_theta_full	25.242		
diffrn roflns thota min	2 124	_diffrn_reflns_theta_max	30.104	that describe the	e crystal
	2.124	_diffrn_reflns_theta_min	2.124		
_uiiiii_ambient_temperature	30(Z)	diffrn_ambient_temperature	90(2)	the instrument a	atc fro
_uiffin measured fraction thata for	· 1] 1 000	_diffrn_detector	'Bruker APEX2 area detector'		z(0., 110)
_uiffing measured_fraction_theta_t	111 1.000	_diffrn_detector_area_resol_mean	7.9	··· f · ··· · · · · · · · · · · · · · ·	
_diffrn_measured_fraction_theta_ma	ax 0.999	_diffrn_detector_type	'CCD area detector'	information culle	ed from
_diffrn_measurement_device_type	r	_diffrn_measured_fraction_theta_f	ull 1.000		
_diffrn_measurement_method	f	_diffrn_measured_fraction_theta_m	ax 0.999	other Bruker out	nut fila
_diffrn_radiation_type	MOK	_diffrn_measurement_device	'Bruker D8 Kappa diffractometer'	other bruker out	put me.
_diffrn_radiation_wavelength	0./10/3	diffrn measurement device type	'Bruker APEX II area detector'		
_diffrn_source	? 	diffrn measurement method	'\w and \f scans'		
retins_Friedel_coverage	0.000	diffrn radiation probe	x-ray		
_retins_Friedel_traction_full		diffrn radiation type	MoK\a		
_retIns_Friedel_fraction_max	•	diffrn radiation wavelength	0.71073		
_refins_number_gt	4218	diffrn_source	'sealed X-ray tube'		
	E990				
_reflns_number_total	2889	diffrn source type	'Incoatec I\ms'		

O 🗄 🗖

Ln 109, Col 38

w

хI

100%

P

....

Windows (CRLF)

⊕ Type here to search

∧ 🕞 ⊄× ENG 11:43 PM 2020-05-13 🛐

UTF-8

Windows (CRLF)

UTF-8

 \times

Structure validation / checkCIF checkCIF validation ALERTS: what they mean and how to respond

Anthony L. Spek*

The introduction of the CIF standard also opened the way for the automated checking of the archived data for their internal consistency and completeness, which was needed to handle the exploding number of structure reports. The International Union of Crystallography (IUCr) journal *Acta Crystallographica Section C* pioneered automated structure validation as a tool for authors, referees and readers. This

Acta Cryst. (2020). **E76**, 1-11

Hi Brian,

How are you doing?

I was working on this structure, there is a disordered Phosphorous fragment, I was hoping if you could take a look and help me with the checkcif alerts.

I am attaching the res, cif and checkcif files.

Thank you,

CheckCIF:

Reads the CIF and performs a myriad of tests (>500!) to assess the validity of the structure. These include, but are not limited to, tests for **missed symmetry**, **missed twinning**, **solvent accessible voids**, and **mis-assigned atom types**.

Accessible via the checkCIF website (checkcif.iucr.org) as well as via a stand-alone version available via PLATON.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) hi005

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

a=10.7046(8) alpha=90	b=15.0609(11)	c=12.5922(10)		
alpha=90	1 1 00 000 (-)			
	beta=99.232(2)	gamma=90		
90 K				
Calculated	Reporte	ed		
2003.8(3)	2003.8	(3)		
P 21/n	P 1 21,	/n 1		
-P 2yn	-P 2yn			
C25 H19 N O5	C25 H1	9 N 05		
C25 H19 N O5	C25 H1	9 N 05		
413.41	413.41			
1.370	1.370			
4	4			
0.096	0.096			
864.0	864.0			
864.45				
15,21,17	15,21,1	17		
5895	5889			
0.985,0.991				
0.981				
	Calculated 2003.8(3) P 21/n -P 2yn C25 H19 N 05 C25 H19 N 05 413.41 1.370 4 0.096 864.0 864.45 15,21,17 5895 0.985,0.991	Calculated Report 2003.8(3) 2003.8 P 21/n P 1 21/ -P 2yn -P 2yn C25 H19 N 05 C25 H19 C25 H19 N 05 C25 H19 413.41 413.41 1.370 1.370 4 4 0.096 0.096 864.0 864.0 864.45 15,21,17 15,21,17 5889 0.985,0.991 5889	Calculated Reported 2003.8(3) 2003.8(3) P 21/n P 1 21/n 1 -P 2yn -P 2yn C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 413.41 413.41 1.370 1.370 4 4 0.096 0.096 864.0 864.0 864.45 15,21,17 15,21,17 5895 0.985,0.991 5889	Calculated Reported 2003.8(3) 2003.8(3) P 21/n P 1 21/n 1 -P 2yn -P 2yn C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 C25 H19 N 05 413.41 413.41 1.370 1.370 4 4 0.096 0.096 864.0 864.0 864.45 15,21,17 15,21,17 5889 0.985,0.991 5889

🔍 Alert level A			
EXPT005 ALERT 1 A _exptl_crystal_description is missing			
Crystal habit description.			
The following tests will not be performed.			
CRYSR_01			
DIFF003 ALERT 1 Adiffrn_measurement_device_type is missing			
Diffractometer make and type. Replaces _diffrn_measurement	type.		
PLAT183 ALERT 1 A Missing cell_measurement_reflns_used Value	Please	Do	1
PLAT184_ALERT_1_A Missing _cell_measurement_theta_min Value	Please	Do	1
PLAT185 ALERT 1 A Missing cell_measurement_theta_max Value	Please	Do	1
PLAT699_ALERT_1_A Missing _exptl_crystal_description Value	Please	Do	ł

Alert level C

PLAT052 ALERT 1 C	Info	on	Absorption	Correction	Method	Not	Given	Please Do	ļ
-------------------	------	----	------------	------------	--------	-----	-------	-----------	---

Alert level G

PLAT883 ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600	5	Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	4.3	Low
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	19	Info

6 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully

- ALERT level B = A potentially serious problem, consider carefully
- 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 4 ALERT level G = General information/check it is not something unexpected
- 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 1 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 1 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 0 ALERT type 5 Informative message, check

Generates "...a report consisting of a list of ALERTS, with associated A, B and C levels of importance, for issues that needed to be addressed. It should be clear the ALERTS are not necessarily errors. They might also point to interesting feature is a crystal structure ... All ALERTS should be checked by the authors: a set of lower-level ALERTS may in combination point to a serious issue that needs to be addressed."

While all ALERTS need to be addressed or at least considered, that does not mean that they have to be eliminated (although that is the best outcome). The **Validation Response Form** (vrf) is used to respond to each ALERT.

More embedded links!!

🗣 Alert level A			
EXPT005 ALERT 1 A _exptl_crystal_description is missing			
Crystal habit description.			
The following tests will not be performed.			
CRYSR_01			
DIFF003 ALERT 1 Adiffrn_measurement_device_type is missing			
Diffractometer make and type. Replaces _diffrn_measurement	type.		
PLAT183 ALERT 1 A Missing _cell_measurement_reflns_used Value	Please	Do	1
PLAT184_ALERT_1_A Missing _cell_measurement_theta_min Value	Please	Do	1
PLAT185 ALERT 1 A Missing cell measurement theta max Value	Please	Do	1
PLAT699_ALERT_1_A Missing _exptl_crystal_description Value	Please	Do	1

Alert level C

PLAT052 ALERT 1 C Info on Absorption Correction Method Not Given Please Do ! IUCr) IUCr checkCIF procedure - Google Chrome _ \times ● journals.iucr.org/services/cif/checking/PLAT183.html se Do I IUCr II 5 Note **IUCr** Journals .3 Low 19 Info search IUCr Journals Q 0 home submit subscribe open access checkCIF procedure ight ed PLAT183 PLAT183 Type_1 Check for _cell_measured_refins_used value reported ta ent Please supply the value for _cell_measurement_reflns_used. E-alerts Twitter Facebook Follow IUCr Journals Search IUCr Journals Q doi All journals page Author volume Advanced search

A service of the International Union of Crystallography

checkCIF reports on the consistency and integrity of crystal structure determinations reported in **CIF** format.

Please upload your CIF using the form below. 🖸

File name: Choose File jl329.cif

Select form of checkCIF report

HTML
PDF
PDF (recommended for CIFs that might take a long time to check)

Select validation type

Full validation of CIF and structure factors
 Full IUCr publication validation of CIF and structure factors

Validation of CIF only (no structure factors)

Output Validation Response Form Level A alerts only

- Level A and B alerts
- Level A, B and C alerts

None

Send CIF for checking

Information about this version of checkCIF ...

Useful links Prepublication check for submissions to IUCr journals Details of checkCIF/PLATON tests CIF dictionary Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC

Cut-and-paste the vrf into your CIF, edit in your own response at the '...', save and resubmit to checkCIF.org. **Your new report will include your responses.**

Validation Response Forms

0 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 24 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 19 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_SHFSU01_jl329
;
PROBLEM: The absolute value of parameter shift to su ratio > 0.10
RESPONSE: ...
;
_vrf_PLAT080_jl329
;
PROBLEM: Maximum Shift/Error ..... 0.16 Why ?
RESPONSE: ...
;
_vrf_PLAT213_jl329
;
PROBLEM: Atom F00P has ADP max/min Ratio ..... 4.8 prolat
RESPONSE: ...
;
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Validation Response Forms

CheckCIF/Structure validation

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Validation Response Forms

CheckCIF/Structure validation

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Can access checkCIF from PLATON directly

	📙 🛃 🗢 jl329 - Copy				
	File Home Share	View			
	Pin to Quick Copy Paste Clipboard	Cut Copy path Paste shortcut Copy to $\stackrel{\frown}{}$	Delete Rename anize New	iasy access • w Open	Open - Select all Edit Select none History Invert selection Select
	← → · ↑ 🔒 « Xray	work > Love > jl329 - Copy >	~ č	ر المحمد الم	ру
	Desktop	Name	Date modified	Туре	Size
	🔶 Downloads 🖈 🔤	ik rckf	2020-05-21 5:43	PM CKF File	3.423 KB
	🔮 Documents 🖈	jl329.vrf	2020-05-21 5:43	PM VRF File	1 KB
Taxt varsian of	📰 Pictures 🛛 🖈	🗟 jl329.chk	2020-05-21 5:39	PM Recovered File Fra	. 7 KB
	🚅 D:\ 🖈	jl329.cif.hash	2020-05-15 4:14 1	PM HASH File	1 KB
your validation	CCCW20	// jl329.cif	2020-05-15 4:14 F	PM CIF File	3,299 KB
response form	jl329 - Copy	/// jl329.fcf	2020-05-15 4:14	PM FCF File	1,291 KB
	ra096	/// jl329.lst	2020-05-15 4:14 F	PM LST File	125 KB
	Solvent Masks	ili ji329.mat	2020-05-15 4:14 F	M Microsoft Access	3,383 KB
	Solucine musics	🔇 jl329.res	2020-05-15 4:14 P	PM RES File	24 KB
	OneDrive	JI329.ins	2020-05-15 4:14 1	M INS File	18 KB
	This PC	JI329.lps	2020-05-11 10:48	AM LPS File	717 KB
	3D Objects	il329.fki	2020-05-11 12:19	DM FAR File	2,001 KB
	Deskton	il329-mask.log	2020-05-10 10:01	PM Text Document	5 KB
	Documents	pol.log	2020-05-10 9:18 6	PM Text Document	1 KB
	Develoada	wgxTextServer.log	2020-05-10 9:17	PM Text Document	1 KB
	- Downloads	project.info	2020-05-10 9:17	PM INFO File	7 KB
	J Music	platon.input	2020-05-10 9:16	PM INPUT File	2,722 KB
	Pictures	platon.fcf	2020-05-10 9:16	PM FCF File	1,291 KB
	Videos	🦳 jl329.pcf	2020-03-17 10:25	AM PCF File	2 KB
	🏥 Local Disk (C:)	🥘 mo_jl329.abs	2020-03-17 10:25	AM ABS File	6 KB
	net frames (\\chem- ♥ 26 items	🧾 mo_jl329_0mls	2020-03-17 10:24	AM _LS File	72 KB

	📙 🌛 🗢 jl329 - Copy								
	File Home Share	View							
	Pin to Quick Copy Paste	从 Cut ┉ Copy path Paste shortcut	Move Copy to *	Delete Rename	New i New folder	tem • access •	Properties	Select all Select none	on
	Clipboard		Org	anize	New		Open	Select	
	← → × ↑ 📙 « Xray	y work > Love >	il329 - Copy ⇒		ٽ ~	<u>م</u>	earch jl329 - Copy		
	Desktop	Name		Da	te modified	Тур	oe Size		
	🕂 Downloads 🖈	its %ckf		20	20-05-21 5:43 PM	CK	F File	3,423 KB	
	🔮 Documents 🖈	jl329.vrf		20	20-05-21 5:43 PM	VR	F File	1 KB	
Toutwardian of	📰 Pictures 🛛 🖈	jl329.chk		20	20-05-21 5:39 PM	Re	covered File Fra	7 KB	
lext version of	🚅 D:\ 🛛 🖈	🔄 jl3 f.hash		20	20-05-15 4:14 PM	HA	SH File	1 KB	
your validation	CCCW20	/// j132		20	20-05-15 4:14 PM	CIF	File	3,299 KB	
response form	jl329 - Copy	j1329.fc		20	20-05-15 4:14 PM	FC	F File	1,291 KB	
	ra096	// jl329.lst		20	20-05-15 4:14 PM	LST	l File	125 KB	Text version of
	Solvent Masks	il329.mat		20	20-05-15 4:14 PM	Mi	crosoft Access	3,383 KB	vour checkCIF
		JI329.res		20	20-05-15 4:14 PM	KE:	S File	24 KB	, report
	OneDrive			20	20-05-15 4:14 PIVI		S File	18 KB	Teport
	💻 This PC	ii329.hki		20	20-05-11 12:19 AM	HK	L File	ZDSLKB	
	3D Objects	il329.fab		20	20-05-10 10:01 PM	FAI	B File	540 KB	
	Desktop	jl329-mask.lo	9	20	20-05-10 10:01 PM	Tex	t Document	5 KB	
	Documents	wgxJob.log	-	20	20-05-10 9:18 PM	Tex	t Document	1 KB	
	L Downloads	wgx Text Serve	r.log	20	20-05-10 9:17 PM	Tex	t Document	1 KB	
	Music	📄 project.info		20	20-05-10 9:17 PM	INF	FO File	7 KB	
	Distures	platon.input		20	20-05-10 9:16 PM	IN	PUT File	2,722 KB	
		laton.fcf		20	20-05-10 9:16 PM	FC	F File	1,291 KB	
		/// jl329.pcf		20	20-03-17 10:25 AM	PC	F File	2 KB	
	Eccal Disk (C:)	mo_jl329.abs		20	20-03-17 10:25 AM	AB	S File	6 KB	
	grames (\\chem- ♥ 26 items	🔳 mo_jl329_0m.	_ls	20	20-03-17 10:24 AM	_LS	File	72 KB	

Run checkCIF from PLATON

CifPlus

J. C:	329	ove\jl329 - (Copy\jl329.re	es		Pbc
C	39H43CIF3	N ₃ Ni		% /	" 😑 ("	🗍 🐖 🦻 🏅
a b	= 18.9031(13) = 26.3085(17)	α = 90° β = 90°	Z = 16 Z' = 2	3	R ₁	6.72 <u>%</u>
c	= 30.519(2)	γ = 90°	V = 1	5177.2(18)	WR ₂	24.18 %
Sh	ift 0.4	/ 0 1/0 / C Max Pea	22.5 k 4.4	Min Peak	4.52%	SooF 1.04
Wa	-0.44	40 may be spli	• 4.4	NPD	-0.5	1.04
		May be spil				Info
	lome	WORK	Iviev		0015	Info
S	olve	(•) Refi	ne 🕁	Draw	(\bullet)	Report (
Т	oolbox Wo	ork				
C	ifPlus					
0	ID =		n/a			Lov
						Run Local CheckC
0	014	012				
0	011	012	 CI	F 11329		
0	Origination: Olav2.1.2 Device: Review ADEV Jacob CELL INFO. OK					
0	detector					
	Collection ? Graphics: Olex2 1.3 Publication Olex2 1.3 (Dolomanov et al., 2009) (Dolomanov et al., 2009)					n Olex2 1.3 v et al., 2009)
	Reduction SA (Bruker, 2019)	INT V8.40A	Solution SHE	LXT 2018/2	Refineme	nt: XL (Sheldrick,
			(Sheidhick, 201	18)	2000)	
0	μ = 0.626	µ×mid = 0	.2 max =	0.7461 m	in = 0.7059	multi-scan
0	μ = 0.626 Correction De correction. wR to maximum train	µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0	.2 max = BS-2016/2 (Bru 556 before and .9461. The W2	0.7461 m uker,2016/2) v 10.0470 after correction fac	in = 0.7059 vas used for correction. T tor is Not pre	multi-scan absorption he Ratio of minimum sent.
0	μ = 0.626 Correction De correction. wR to maximum trai Peak = 4.364	µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0	(Sheidhick, 201 .2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476	0.7461 m uker,2016/2) v 10.0470 after correction fac	in = 0.7059 vas used for correction. T tor is Not pre Restrair	multi-scan absorption he Ratio of minimum esent. hts = 6
0	μ = 0.626 Correction Decorrection. wR3 to maximum train Peak = 4.364 Largest Shift	<pre>µ×mid = 0 atails = SADA 2(int) was 0.0 nsmission is 0 = 0.446</pre>	2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476 Mean Shift =	0.7461 m uker,2016/2) v 0.0470 after correction fac 0.014	in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT =	multi-scan absorption he Ratio of minimum issent. hts = 6
0	μ = 0.626 Correction De correction. wR to maximum train Peak = 4.364 Largest Shift _refine_speci	<pre> µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 al_details = 1 </pre>	(Sheidhick, 20 2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476 Mean Shift =	0.7461 m uker,2016/2) v 10.0470 after correction fac 0.014	in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT =	multi-scan absorption he Ratio of minimum sent. hts = 6 0.1 19.8
0	μ = 0.626 Correction De correction wR to maximum trai Peak = 4.364 Largest Shift _refine_specia _exptl_specia	µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 al_details = 1 I_details = n/	2 max = BS-2016/2 (Brc 556 before and 9461. The W2 Hole = -0.476 Mean Shift = ?	0.7461 m uker,2016/2) v 0.0470 after correction fac 0.014	in = 0.7059 vas used for correction. T tor is Not pre Restrair WGHT =	multi-scan absorption he Ratio of minimum isent. hts = 6 0.1 19.8
	μ = 0.626 Correction De correction. wR2 to maximum trai Peak = 4.364 Largest Shift _refine_specia _exptl_specia R1 = 0.0672	<pre> µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 al_details = 1 I_details = n/ wR22</pre>	2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476 Mean Shift = 2 a = 0.2418	0.7461 m uker,2016/2) v 0.0470 after correction fac 0.014 Data/Par =	in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT =	multi-scan absorption he Ratio of minimum issent. hts = 6 0.1 19.8 GooF = 1.049
	μ = 0.626 Correction De correction. wR to maximum train Peak = 4.364 Largest Shift _refine_specia _exptl_specia R1 = 0.0672 Shape prism	<pre>µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 al_details = n/ wR22 Color</pre>	2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476 Mean Shift = 2 a = 0.2418 ur orange	0.7461 m Jker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38	in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT = 18.31	multi-scan absorption he Ratio of minimum ssent. hts = 6 0.1 19.8 GooF = 1.049 3.
	μ = 0.626 Correction De correction. wR to maximum trai Peak = 4.364 Largest Shift _refine_specia _exptl_specia R1 = 0.0672 Shape prism	µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 ial_details = n/ il_details = n/ wR22 Color lents = 0.045	 (sheddick, 20) 2 max = BS-2016/2 (Bru 556 before and .9461. The W2 Hole = -0.476 Mean Shift = a = 0.2418 ar orange 2 	0.7461 m Jker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38 av unet	2000) in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT = 18.31 (x 0.21 mm^3) (nett = 0.044	multi-scan absorption he Ratio of minimum esent. hts = 6 0.1 19.8 GooF = 1.049 3.
	μ = 0.626 Correction De correction. wR to maximum train Peak = 4.364 Largest Shift _refine_specia _exptl_specia R1 = 0.0672 Shape prism _av_R_equiva Total = 23172	µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 al_details = n/ wR22 Color lents = 0.045 I > 2(s	(sheidnick, 20 .2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476 Mean Shift = 7 a = 0.2418 ur orange 2 s(I) = 16696	0.7461 m uker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38 _av_unet1	2000) iin = 0.7059 vas used for correction. T tor is Not pre- Restrain WGHT = 18.31 i x 0.21 mm^3 inetl = 0.044	multi-scan absorption he Ratio of minimum issent. its = 6 0.1 19.8 GooF = 1.049 3. 14 Use = 72.19
	μ = 0.626 Correction Decorrection wRite to maximum trained	µ×mid = 0 etails = SADA ((int) was 0.0 nsmission is 0 = 0.446 al_details = 1 I_details = n/ wR22 Colou lents = 0.045 I > 2(s 1073) 1	(shednick, 20 .2 max = BS-2016/2 (Bru 556 before and 9461. The W2 Hole = -0.476 Mean Shift = ? a = 0.2418 ur orange 2 (j) = 16696 r = 90(2)	0.7461 m uker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38 _av_unetl 0 _{max} = 30	2000) in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT = 18.31 (18.31 (18.31) X 0.21 mm ⁴ (18.31) (18.31) (19.32) (1	multi-scan absorption he Ratio of minimum issent. ints = 6 0.1 19.8 GooF = 1.049 3. 14 Use = 72.13 /full = 0.999/1.000
	μ = 0.626 Correction De correction. wR2 to maximum trai Peak = 4.364 Largest Shift _refine_specia _expt[_specia R1 = 0.0672 Shape prism _av_R_equiva Total = 23172 MoK\a (λ = 0.7 SQUEEZE stuff)	µ×mid = 0 etails = SADA 2(int) was 0.0 = 0.446 al_details = n/ wR22 Color lents = 0.045 I > 2\s 1073) □ failed!	(3heidnick, 20 .2 max = BS-2016/2 (Bru 556 before and .9461. The W2 Hole = -0.476 Mean Shift = 2 a = 0.2418 ur orange 2 s(I) = 16696 F = 90(2)	0.7461 m Jker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38 _av_unetl 0max = 30	2000) in = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT = 18.31 18.31 (net1 = 0.044 .523 max	multi-scan absorption he Ratio of minimum issent. ints = 6 0.1 19.8 GooF = 1.049 3. 14 Use = 72.19 /full = 0.999/1.000
	μ = 0.626 Correction De correction. wR to maximum trai Peak = 4.364 Largest Shift _refine_specia _exptl_specia R1 = 0.0672 Shape prism _av_R_equiva Total = 23172 MoK\a (λ = 0.7 SQUEEZE stuff All U _{eq} < 0.15	µ×mid = 0 tails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 ial_details = n/ wR22 Colou lents = 0.045 I > 2\s 1073) T failed!	(sheddick, 20 .2 max = BS-2016/2 (Bru 556 before and .9461. The W2 Hole = -0.476 Mean Shift = ? a = 0.2418 ar orange 2 (i) = 16696 f = 90(2)	0.7461 m Jker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38 _av_unetl 0 _{max} = 30 All U _{eo} > 0	2000) iin = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT = 18.31 ix 0.21 mm^3 (netl = 0.044 .523 max .01	multi-scan absorption he Ratio of minimum issent. ints = 6 0.1 19.8 GooF = 1.049 3. 14 Use = 72.19 /full = 0.999/1.000
	μ = 0.626 Correction De correction. wR to maximum trai Peak = 4.364 Largest Shift _refine_specia _exptl_specia R1 = 0.0672 Shape prism _av_R_equiva Total = 23172 MoKla (λ = 0.7 SQUEEZE stuff All U _{eq} < 0.15 Run Checkcif no	µ×mid = 0 etails = SADA 2(int) was 0.0 nsmission is 0 = 0.446 al_details = n/ wR22 Colou lents = 0.045 I > 2(s 1073) ↑ failed!	(sheddick, 20 .2 max = BS-2016/2 (Bru 556 before and .9461. The W2 Hole = -0.476 Mean Shift = .7 a = 0.2418 ur orange 2 .6(I) = 16696 F = 90(2)	0.7461 m Jker,2016/2) v 0.0470 after correction fac 0.014 Data/Par = 0.41 x 0.38 _av_unetl 0 _{max} = 30 All U _{eq} > 0	2000) iin = 0.7059 vas used for correction. T tor is Not pre Restrain WGHT = 18.31 inetl = 0.044 .523 max .01	multi-scan absorption he Ratio of minimum issent. its = 6 0.1 19.8 GooF = 1.049 3. 14 Use = 72.19 /full = 0.999/1.000

CifPlus

Click to edit directly into vrf!

9		THE CLINE	butun un rotor	
0	Shape prism	Colour orange	0.41 x 0.38 x 0.21	I mm^3.
0	_av_R_equivalents	= 0.0452	_av_unetl/netl =	0.0444
	Total = 23172	I > 2\s(I) = 16696		Use = 72.1%
	MoK\a (λ = 0.71073)	T = 90(2)	Θ _{max} = 30.523	max/full = 0.999/1.000
0	SQUEEZE stuff failed!			
0	All U _{eq} < 0.15		All U _{eq} > 0.01	
0	jl329: Rep: C39 H43 C	CI F3 N3 Ni Calc: C3	9 H43 CI F3 N3 Ni C	C-C = 0.0048
	080 ALERT 2 A Max	<u> kimum Shift/Error</u>	<u>0.45</u>	Why ?
	094 ALERT 2 A Rati	o of Maximum / Mi	<u>nimum Residual De</u>	ensity 9.17 Report
	213 ALERT 2 A Ato	m FOOP has ADP ma	ax/min Ratio 5.4	prolat_
	213 ALERT 2 A Ato	<u>m C1 has ADP max</u>	/min Ratio 5.8 pr	rolat_
	602 ALERT 2 A VER	Y LARGE Solvent A	ccessible VOID(S) i	in Structure ! Info
	971 ALERT 2 A Che	ck Calcd Resid. De	ns. 0.98A From	
	971 ALERT 2 A Che	ck Calcd Resid. De	ns. 0.98A From	
	971 ALERT 2 A Che	ck Calcd Resid. De	ns. 0.98A From	
	097 ALERT 2 B Larg	<u>e Reported Max. (</u>	<u>Positive) Residual [</u>	Density 4.36 eA-3
	934 ALERT 3 B Nun	hber of (lobs-lcalc)	/Sigma(W) > 10 Outl	iers 10 Check
	971 ALERT 2 B Che	ck Calcd Resid. De	<u>ns. 0.98A From</u>	
	971 ALERT 2 B Che	ck Calcd Resid. De	<u>ns. 0.98A From</u>	
	213 ALERT 2 C Ato	m F1 has ADP max/	min Ratio 3.8 pr	olat
	213 ALERT 2 C Ato	<u>m F00Q has ADP m</u>	ax/min Ratio 3.1	prolat
	213 ALERT 2 C Ato	m F02J has ADP ma	ax/min Ratio 3.7	prolat
	213 ALERT 2 C Ato	m F02H has ADP ma	ax/min Ratio 3.1	prolat_
	213 ALERT 2 C Ato	<u>m F02I has ADP ma</u>	x/min Ratio 3.9 j	orolat
	220 ALERT 2 C Non	Solvent Resd 2 C U	leq(max) / Ueq(min	<u>) Range 3.9 Ratio</u>
	222 ALERT 3 C Non	Solvent Resd 2 H U	iso(max)/Uiso(min)	Range 4.1 Ratio
	234 ALEDT A Clan	ne Hirehfeld Niffer	ance C020 C4 0.2	0 Ang

	6	Shape prism	Colour orange	0.41 x 0.38 x 0.2	1 mm^3.		
	6	av_R_equivalents	= 0.0452	_av_unetl/netl	= 0.0444		
		Total = 23172	I > 2\s(I) = 16696			Use = 72.1%	
		ΜοΚ\a (λ = 0.71073)	T = 90(2)	O _{max} = 30.523	max/full =	0.999/1.000	
	6	SQUEEZE stuff failed!					
	6) All U _{eq} < 0.15		All U _{eq} > 0.01			
	6) jl329: Rep: C39 H43 C	CI F3 N3 Ni Calc: C39	H43 CI F3 N3 Ni	C-C = 0.0048		
		080 ALERT 2 A Max	<u>kimum Shift/Error</u>	<u>0.4</u>	5 Why ?		
CheckCIF/Structure validation		094 ALERT 2 A Rati	<u>o of Maximum / Min</u>	<u>imum Residual D</u>	ensity 9.1	7 Report	
		213 ALERT 2 A Ato	m FOOP has ADP ma	<u>x/min Ratio 5.4</u>	prolat		
		213 ALERT 2 A Ato	m C1 has ADP max/r	<u>min Ratio 5.8 p</u>	<u>rolat</u>		
		602 ALERT 2 A VER	Y LARGE Solvent Ac	cessible VOID(S)	in Structure	<u>! Info</u>	
	Items to be entered into cif file			_			
Validation Response Forms	_olex2_diffrn_ambient_temp exptl crystal recrystalli	erature_device 'Oxfo zation method 'The m	ord Cryosystems' Material was recrys	stallised from E	t20 by si		
	loop_				-	eA-3	
	_publ_author_name _publ_author_email					eck	
	_publ_author_address	ercity of Britich Co	lumbial				
	'Patrick, B.' '' 'University of British Columbia'						
	olex2 submission original	sample id WC801					
	olex2_exptl_crystal_mount	ing_method 'The crys	tal was mounted on	n a mylar loop i	n oil'		
	_publ_contact_author_name	• •					
	VII PLAT 602 11329						
	; PROBLEM: VERY LARGE Solve:	nt Accessible VOID[S] in Structure ! :	Info:			
	; PROBLEM: VERY LARGE Solve: RESPONSE: :	nt Accessible VOID[S	3] in Structure ! :	Info:		latio	
	; PROBLEM: VERY LARGE Solve: RESPONSE: ; <	nt Accessible VOID[S	3] in Structure ! :	Info:	×	<u>latio</u>	E.

Validation Response Forms

Recorded response remains with CIF throughout.

Common checkCIF ALERTs

Alert level A PLAT213_ALERT_2_A Atom C39A has ADP max/min Ratio	6.1 prolat
<pre>Alert level A THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less t Calculated sin(theta_max)/wavelength = 0.5378</pre>	chan 0.550
Alert level B PLAT415_ALERT_2_B Short Inter D-HH-X H47BH13B	2.01 Ang.
Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full value Low .	0.951 Why?
Alert level B PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW > 10 Outliers	2 Check
Alert level A PLAT355 ALERT 3 A Long O-H (X0.82,N0.98A) O8 - H7 .	1.15 Ang.